On fundamental units of certain fields
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 293-304

Voir la notice de l'article provenant de la source Math-Net.Ru

The author describes a function that depends polynomially on the coefficients of the minimal polynomial of an algebraic number and has the property that the successive minima in the group of units of a totally real field are attained on a set of units which are fundamental units in the case of fields of degree $\leqslant4$ and which generate a group of small index in the general case.
@article{SM_1993_76_2_a2,
     author = {E. M. Matveev},
     title = {On fundamental units of certain fields},
     journal = {Sbornik. Mathematics},
     pages = {293--304},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - On fundamental units of certain fields
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 293
EP  - 304
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/
LA  - en
ID  - SM_1993_76_2_a2
ER  - 
%0 Journal Article
%A E. M. Matveev
%T On fundamental units of certain fields
%J Sbornik. Mathematics
%D 1993
%P 293-304
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/
%G en
%F SM_1993_76_2_a2
E. M. Matveev. On fundamental units of certain fields. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 293-304. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/