@article{SM_1993_76_2_a2,
author = {E. M. Matveev},
title = {On fundamental units of certain fields},
journal = {Sbornik. Mathematics},
pages = {293--304},
year = {1993},
volume = {76},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/}
}
E. M. Matveev. On fundamental units of certain fields. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 293-304. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/
[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR
[2] Pohst M., Zassenhaus H., “On effective computation of fundamental units. I; II”, Math. Comput., 38:157 (1982), 275–291 ; 293–329 | DOI | MR | Zbl
[3] Buchmann J., “On the computation of units and class numbers by a generalization of Lagrange's algorithm”, J. Number Theory, 26:1 (1987), 8–30 | DOI | MR | Zbl
[4] Buchmann J., Pohst M., Schmettow J. V., “On the computation of unit groups and class groups of totally real quartic fields”, Math. Comput., 53:187 (1989), 387–397 | DOI | MR | Zbl
[5] Godwin H. J., “The determination of units in totally real cubic fields”, Proc. Cambridge Philos. Soc., 56 (1960), 318–321 | DOI | MR | Zbl
[6] Cusick T. W., “Finding fundamental units in cubic fields”, Math. Proc. Cambridge Philos. Soc., 92:3 (1982), 385–389 | DOI | MR | Zbl
[7] Cusick T. W., “Finding fundamental units in totally real fields”, Math. Proc. Cambridge Philos. Soc., 96:2 (1984), 191–194 | DOI | MR | Zbl
[8] Cusick T. W., “Units in real quartic fields”, Math. Proc. Cambridge Philos. Soc., 107:1 (1990), 5–17 | DOI | MR | Zbl
[9] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[10] Matveev E. M., “Ob osnovnykh edinitsakh nekotorykh polei”, Tez. dokl. respublikanskoi nauchno-teoreticheskoi konferentsii {\cyr }Teoriya chisel i ee prilozheniya{\cyr >} (Tashkent, 26–28 sentyabrya 1990 g.), TGPI, Tashkent, 1990
[11] Angell I. O., “A table of complex cubic fields”, Bull. London Math. Soc., 5 (1973), 37–38 | DOI | MR | Zbl