On fundamental units of certain fields
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 293-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author describes a function that depends polynomially on the coefficients of the minimal polynomial of an algebraic number and has the property that the successive minima in the group of units of a totally real field are attained on a set of units which are fundamental units in the case of fields of degree $\leqslant4$ and which generate a group of small index in the general case.
@article{SM_1993_76_2_a2,
     author = {E. M. Matveev},
     title = {On fundamental units of certain fields},
     journal = {Sbornik. Mathematics},
     pages = {293--304},
     year = {1993},
     volume = {76},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - On fundamental units of certain fields
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 293
EP  - 304
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/
LA  - en
ID  - SM_1993_76_2_a2
ER  - 
%0 Journal Article
%A E. M. Matveev
%T On fundamental units of certain fields
%J Sbornik. Mathematics
%D 1993
%P 293-304
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/
%G en
%F SM_1993_76_2_a2
E. M. Matveev. On fundamental units of certain fields. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 293-304. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a2/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[2] Pohst M., Zassenhaus H., “On effective computation of fundamental units. I; II”, Math. Comput., 38:157 (1982), 275–291 ; 293–329 | DOI | MR | Zbl

[3] Buchmann J., “On the computation of units and class numbers by a generalization of Lagrange's algorithm”, J. Number Theory, 26:1 (1987), 8–30 | DOI | MR | Zbl

[4] Buchmann J., Pohst M., Schmettow J. V., “On the computation of unit groups and class groups of totally real quartic fields”, Math. Comput., 53:187 (1989), 387–397 | DOI | MR | Zbl

[5] Godwin H. J., “The determination of units in totally real cubic fields”, Proc. Cambridge Philos. Soc., 56 (1960), 318–321 | DOI | MR | Zbl

[6] Cusick T. W., “Finding fundamental units in cubic fields”, Math. Proc. Cambridge Philos. Soc., 92:3 (1982), 385–389 | DOI | MR | Zbl

[7] Cusick T. W., “Finding fundamental units in totally real fields”, Math. Proc. Cambridge Philos. Soc., 96:2 (1984), 191–194 | DOI | MR | Zbl

[8] Cusick T. W., “Units in real quartic fields”, Math. Proc. Cambridge Philos. Soc., 107:1 (1990), 5–17 | DOI | MR | Zbl

[9] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[10] Matveev E. M., “Ob osnovnykh edinitsakh nekotorykh polei”, Tez. dokl. respublikanskoi nauchno-teoreticheskoi konferentsii {\cyr }Teoriya chisel i ee prilozheniya{\cyr >} (Tashkent, 26–28 sentyabrya 1990 g.), TGPI, Tashkent, 1990

[11] Angell I. O., “A table of complex cubic fields”, Bull. London Math. Soc., 5 (1973), 37–38 | DOI | MR | Zbl