Relaxation cycles in systems with delay
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 507-522

Voir la notice de l'article provenant de la source Math-Net.Ru

Various examples of differential-difference equations encountered in applications show a rich variety of relaxation properties which, being important exceptions, do not permit the construction of a general theory. The authors study and give a new interpretation of a relaxation system which is typical from many points of view and which has been well known in the theory of quantum oscillators for 60 years. Two theorems on the existence of relaxation cycles are proved, and then a study of their stability properties is prepared, as usual, by constructing the asymptotics of the relaxation oscillations.
@article{SM_1993_76_2_a12,
     author = {A. Yu. Kolesov and Yu. S. Kolesov},
     title = {Relaxation cycles in systems with delay},
     journal = {Sbornik. Mathematics},
     pages = {507--522},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a12/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - Yu. S. Kolesov
TI  - Relaxation cycles in systems with delay
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 507
EP  - 522
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a12/
LA  - en
ID  - SM_1993_76_2_a12
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A Yu. S. Kolesov
%T Relaxation cycles in systems with delay
%J Sbornik. Mathematics
%D 1993
%P 507-522
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a12/
%G en
%F SM_1993_76_2_a12
A. Yu. Kolesov; Yu. S. Kolesov. Relaxation cycles in systems with delay. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 507-522. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a12/