Best uniform rational approximation of~$|x|$ on~$[-1,1]$
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 461-487

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider best rational approximants in the uniform norm to the function $|x|$ on $[-1,1]$. The main result is a proof of a conjecture by R. S. Varga, A. Ruttan, and A. J. Carpenter. They have conjectured that if $E_{nn}(|x|,[-1,1])$, $n\in\mathbb{N}$, denotes the error of the $n$th degree rational approximant, then \begin{equation} \lim_{n\to\infty}e^{\pi\sqrt n}E_{nn}(|x|,[-1,1])=8. \tag{1} \end{equation} This conjecture generalizes earlier results, among them most prominently results by D. J. Newman and by N. S. Vyacheslavov.
@article{SM_1993_76_2_a10,
     author = {H. Stahl},
     title = {Best uniform rational approximation of~$|x|$ on~$[-1,1]$},
     journal = {Sbornik. Mathematics},
     pages = {461--487},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/}
}
TY  - JOUR
AU  - H. Stahl
TI  - Best uniform rational approximation of~$|x|$ on~$[-1,1]$
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 461
EP  - 487
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/
LA  - en
ID  - SM_1993_76_2_a10
ER  - 
%0 Journal Article
%A H. Stahl
%T Best uniform rational approximation of~$|x|$ on~$[-1,1]$
%J Sbornik. Mathematics
%D 1993
%P 461-487
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/
%G en
%F SM_1993_76_2_a10
H. Stahl. Best uniform rational approximation of~$|x|$ on~$[-1,1]$. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 461-487. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/