Best uniform rational approximation of $|x|$ on $[-1,1]$
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 461-487 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider best rational approximants in the uniform norm to the function $|x|$ on $[-1,1]$. The main result is a proof of a conjecture by R. S. Varga, A. Ruttan, and A. J. Carpenter. They have conjectured that if $E_{nn}(|x|,[-1,1])$, $n\in\mathbb{N}$, denotes the error of the $n$th degree rational approximant, then \begin{equation} \lim_{n\to\infty}e^{\pi\sqrt n}E_{nn}(|x|,[-1,1])=8. \tag{1} \end{equation} This conjecture generalizes earlier results, among them most prominently results by D. J. Newman and by N. S. Vyacheslavov.
@article{SM_1993_76_2_a10,
     author = {H. Stahl},
     title = {Best uniform rational approximation of~$|x|$ on~$[-1,1]$},
     journal = {Sbornik. Mathematics},
     pages = {461--487},
     year = {1993},
     volume = {76},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/}
}
TY  - JOUR
AU  - H. Stahl
TI  - Best uniform rational approximation of $|x|$ on $[-1,1]$
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 461
EP  - 487
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/
LA  - en
ID  - SM_1993_76_2_a10
ER  - 
%0 Journal Article
%A H. Stahl
%T Best uniform rational approximation of $|x|$ on $[-1,1]$
%J Sbornik. Mathematics
%D 1993
%P 461-487
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/
%G en
%F SM_1993_76_2_a10
H. Stahl. Best uniform rational approximation of $|x|$ on $[-1,1]$. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 461-487. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/

[1] Meinardus G., Approximations of Functions: Theory and Numerical Methods, Springer-Verlag, New-York, 1967 | MR | Zbl

[2] Rivlin T. J., An Introduction to Approximation of Function, Blaisdell Publ. Co., Waltham Mass., 1969 | MR | Zbl

[3] Bernstein S., “Sur meilleure approximation de $|x|$ par des polynomes de degres donnes”, Acta Math., 37 (1913), 1–57 | DOI | Zbl

[4] Varga R. S., Carpenter A. J., “On the Bernstein Conjecture in Approximation Theory”, Consrt. Approx., 1 (1985), 333–348 ; “O gipoteze S. N. Bernshteina v teorii approksimatsii”, Matem. sb., 129(171) (1986), 535–548 | DOI | MR | Zbl | MR

[5] Newman D. J., “Rational approximation to $|x|$”, Michigan Math. J., 11 (1964), 11–14 | DOI | MR | Zbl

[6] Freud G., Szabados J., “Rational Approximations to $x^\alpha $”, Acta Math. Acad. Sci. Hungar., 18 (1967) | DOI | MR

[7] Bulanov A. P., “Asimptotika naimenshego ukloneniya $|x|$ ot ratsionalnykh funktsii”, Matem. sb., 76(118) (1968), 288–303 | MR | Zbl

[8] Gonchar A. A., “Skorost ratsionalnykh approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matem. sb., 73(115) (1967), 630–638 | MR | Zbl

[9] Gonchar A. A., “Otsenki rosta ratsionalnykh funktsii i nekotorye ikh primeneniya”, Matem. sb., 72(114) (1967), 489–503 | MR | Zbl

[10] Gonchar A. A., “Skorost ratsionalnoi approksimatsii i svoistvo odnoznachnosti analiticheskikh funktsii v okrestnosti izolirovannoi osoboi tochki”, Matem. sb., 94(136) (1974), 265–282 | MR | Zbl

[11] Vyacheslavov N. S., “Approksimatsiya $|x|$ ratsionalnymi funktsiyami”, Matem. zametki, 16 (1974), 163–171 | MR | Zbl

[12] Vyacheslavov N. S., “O ravnomernoi approksimatsii $|x|$ ratsionalnymi funktsiyami”, DAN SSSR, 220 (1975), 512–515 | MR | Zbl

[13] Vyacheslavov N. S., “O naimenshem uklonenii funktsii $\operatorname {sign}x$ i ee pervoobraznykh ot ratsionalnykh funktsii v $L_p$-metrikakh, $0

\leq \infty $”, Matem. sb., 103(145) (1977), 19–31

[14] Vyacheslavov N. S., “Ob approksimatsii $x^\alpha $ ratsionalnymi funktsiyami”, Izv. AN SSSR. Seriya matem., 44:1 (1980), 92–109 | MR | Zbl

[15] Varga R. S., Ruttan A., Carpenter A. J., Numerical results on best rational approximation of $|x|$ on $[-1,1]$, Preprint ; “Chislennye rezultaty o nailuchshikh ravnomernykh ratsionalnykh approksimatsiyakh funktsii $|x|$ na otrezke $[-1,1]$”, Matem. sb., 182 (1991), 1523–1541 | Zbl

[16] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[17] Hayman W. K., Kennedy P. B., Subharmonic Functions, Academic Press, London, 1976

[18] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedeniya, Fizmatgiz, M., 1968

[19] Gonchar A. A, Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167) (1984), 117–127 | MR

[20] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN, 157, Nauka, M., 1981, 31–48 | MR | Zbl