Best uniform rational approximation of~$|x|$ on~$[-1,1]$
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 461-487
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider best rational approximants in the uniform norm to the function $|x|$ on $[-1,1]$. The main result is a proof of a conjecture by R. S. Varga, A. Ruttan, and A. J. Carpenter. They have conjectured that if $E_{nn}(|x|,[-1,1])$, $n\in\mathbb{N}$, denotes the error of the $n$th degree rational approximant, then
\begin{equation}
\lim_{n\to\infty}e^{\pi\sqrt n}E_{nn}(|x|,[-1,1])=8.
\tag{1}
\end{equation}
This conjecture generalizes earlier results, among them most prominently results by D. J. Newman and by N. S. Vyacheslavov.
@article{SM_1993_76_2_a10,
author = {H. Stahl},
title = {Best uniform rational approximation of~$|x|$ on~$[-1,1]$},
journal = {Sbornik. Mathematics},
pages = {461--487},
publisher = {mathdoc},
volume = {76},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/}
}
H. Stahl. Best uniform rational approximation of~$|x|$ on~$[-1,1]$. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 461-487. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a10/