Cubature formulas for classes of functions with bounded mixed difference
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 283-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cubature formulas are considered for classes of functions with bounded mixed difference. The correct order is found for the error of optimal cubature formulas that use the values of the functions at particular points. It turns out that, for the classes indicated above, cubature formulas constructed with the help of number-theoretic methods are optimal (in the sense of order).
@article{SM_1993_76_2_a1,
     author = {V. V. Dubinin},
     title = {Cubature formulas for classes of functions with bounded mixed difference},
     journal = {Sbornik. Mathematics},
     pages = {283--292},
     year = {1993},
     volume = {76},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a1/}
}
TY  - JOUR
AU  - V. V. Dubinin
TI  - Cubature formulas for classes of functions with bounded mixed difference
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 283
EP  - 292
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a1/
LA  - en
ID  - SM_1993_76_2_a1
ER  - 
%0 Journal Article
%A V. V. Dubinin
%T Cubature formulas for classes of functions with bounded mixed difference
%J Sbornik. Mathematics
%D 1993
%P 283-292
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a1/
%G en
%F SM_1993_76_2_a1
V. V. Dubinin. Cubature formulas for classes of functions with bounded mixed difference. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 283-292. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a1/

[1] Dubinin V. V., “Ob optimalnykh kvadraturnykh formulakh dlya klassov funktsii s ogranichennoi smeshannoi raznostyu”, Matem. zametki, 49:1 (1991), 149–151 | MR | Zbl

[2] Bakhvalov N. S., “Ob optimalnykh otsenkakh skhodimosti kvadraturnykh protsessov i metodov integrirovaniya tipa Monte-Karlo na klassakh funktsii”, ZhSVM i MF, 4 (1964), 5–63 | MR | Zbl

[3] Bakhvalov N. S., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Matem. zametki, 12:6 (1972), 655–664 | MR | Zbl

[4] Frolov K. K., Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-mat. nauk, VTs AN SSSR, M., 1979

[5] Bykovskii V. A., O pravilnom poryadke pogreshnosti optimalnykh kubaturnykh formul v prostranstvakh s dominiruyuschei proizvodnoi i kvadratichnykh otkloneniyakh setok, Preprint Dalnevostochnogo nauchnogo tsentra AN SSSR, 1985, s. 3–31 | MR | Zbl

[6] Temlyakov V. N., “Ob odnom prieme polucheniya otsenok snizu pogreshnostei kvadraturnykh formul”, Matem. sb., 181:10 (1990), 1403–1413 | MR | Zbl

[7] Temlyakov V. N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, CLXXVIII, Nauka, M., 1986 | MR | Zbl

[8] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, Izd-vo AN SSSR, M., 1951, 244–278 | MR | Zbl

[9] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR