On varieties of Lie algebras not containing a~three-dimensional simple algebra
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 189-197
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that in the case of zero characteristic of the ground field a variety of Lie algebras not containing a 3-dimensional simple algebra is solvable in the following cases:
1) The variety has a distributive lattice of subvarieties.
2) The variety satisfies all the identities of the infinite-dimensional Witt algebra.
@article{SM_1993_76_1_a9,
author = {S. P. Mishchenko},
title = {On varieties of {Lie} algebras not containing a~three-dimensional simple algebra},
journal = {Sbornik. Mathematics},
pages = {189--197},
publisher = {mathdoc},
volume = {76},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a9/}
}
S. P. Mishchenko. On varieties of Lie algebras not containing a~three-dimensional simple algebra. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 189-197. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a9/