On varieties of Lie algebras not containing a three-dimensional simple algebra
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 189-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that in the case of zero characteristic of the ground field a variety of Lie algebras not containing a 3-dimensional simple algebra is solvable in the following cases: 1) The variety has a distributive lattice of subvarieties. 2) The variety satisfies all the identities of the infinite-dimensional Witt algebra.
@article{SM_1993_76_1_a9,
     author = {S. P. Mishchenko},
     title = {On varieties of {Lie} algebras not containing a~three-dimensional simple algebra},
     journal = {Sbornik. Mathematics},
     pages = {189--197},
     year = {1993},
     volume = {76},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a9/}
}
TY  - JOUR
AU  - S. P. Mishchenko
TI  - On varieties of Lie algebras not containing a three-dimensional simple algebra
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 189
EP  - 197
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a9/
LA  - en
ID  - SM_1993_76_1_a9
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%T On varieties of Lie algebras not containing a three-dimensional simple algebra
%J Sbornik. Mathematics
%D 1993
%P 189-197
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a9/
%G en
%F SM_1993_76_1_a9
S. P. Mishchenko. On varieties of Lie algebras not containing a three-dimensional simple algebra. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 189-197. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a9/

[1] Dnestrovskaya tetrad. Nereshennye problemy teorii kolets i modulei, Izd. 3-e, Novosibirsk, 1982

[2] Mischenko S. P., “O mnogoobraziyakh razreshimykh algebr Li”, Vestnik Mosk. un-ta. Seriya matem. mekh., 1990, no. 1, 100

[3] Vais A. Ya., “O spetsialnykh mnogoobraziyakh algebr Li”, Algebra i logika, 28:1 (1989), 29–40 | MR | Zbl

[4] Higgins P. J., “Lie rings satisfying the Engel condision”, Proc. Cambridge Phil. Soc.: Math. Phys. Sci., 50 (1954), 8–15 | DOI | MR | Zbl

[5] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[6] Razmyslov Yu. P., “Prostye algebry Li, udovletvoryayuschie standartnomu lievu tozhdestvu stepeni 5”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 592–634 | MR | Zbl

[7] Mischenko S. P., “O mnogoobraziyakh razreshimykh algebr Li”, DAN SSSR, 313:6 (1990), 1345–1348 | Zbl

[8] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami. I; II”, VestsI AN BSSR. Ser.fiz.-matem. navuk, 1980, no. 1, 23–30 ; No 2, 22–29 | MR | Zbl

[9] Mischenko S. P., Struktura i tozhdestva nekotorykh razreshimykh mnogoobrazii algebr Li, Dis. ...kand.fiz.-matem. nauk, MGU, M., 1983

[10] Zelmanov E. I., “Globalnaya nilpotentnost engelevykh algebr Li ogranichennogo indeksa nad polem nulevoi kharakteristiki”, DAN SSSR, 292:2 (1987), 265–268 | MR | Zbl

[11] Mischenko S. P., “O razreshimykh podmnogoobraziyakh mnogoobraziya, porozhdennogo algebroi Vitta”, Matem. sb., 136 (178) (1988), 413–425 | Zbl

[12] Drenski V. S., “Predstavleniya simmetricheskoi gruppy i mnogoobraziya lineinykh algebr”, Matem. sb., 115 (157) (1981), 98–115 | MR | Zbl

[13] Mischenko S. P., “O mnogoobraziyakh polinomialnogo rosta algebr Li nad polem kharakteristiki nul”, Matem. zametki, 40:6 (1986), 713–721 | MR