Spectral synthesis in a complex domain for a differential operator with constant coefficients. III: Ample submodules
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 165-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In [1] and [2] the problem of spectral synthesis for a subspace $W$ invariant under a differential operator with constant coefficients was reduced to a check of two properties of its annihilator submodule $I=\operatorname{An}W$: stability and saturation. The present article describes a situation in which this check leads to a positive result, i.e., the annihilator submodule $I$ is ample.
@article{SM_1993_76_1_a8,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. {III:} {Ample} submodules},
     journal = {Sbornik. Mathematics},
     pages = {165--188},
     year = {1993},
     volume = {76},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a8/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Spectral synthesis in a complex domain for a differential operator with constant coefficients. III: Ample submodules
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 165
EP  - 188
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a8/
LA  - en
ID  - SM_1993_76_1_a8
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Spectral synthesis in a complex domain for a differential operator with constant coefficients. III: Ample submodules
%J Sbornik. Mathematics
%D 1993
%P 165-188
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a8/
%G en
%F SM_1993_76_1_a8
I. F. Krasichkov-Ternovskii. Spectral synthesis in a complex domain for a differential operator with constant coefficients. III: Ample submodules. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 165-188. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a8/

[1] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. I: Teorema dvoistvennosti”, Matem. sb., 182:11 (1991), 1559–1587 | MR

[2] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. II: Metod modulei”, Matem. sb., 183:1 (1992), 3–19

[3] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87:4 (1972), 459–489 | MR

[4] Krasichkov-Ternovskii I. F., “Spektralnyi sintez analiticheskikh funktsii na sistemakh vypuklykh oblastei”, Matem. sb., 111 (1980), 3–41 | MR

[5] Shishkin A. B., “Lokalnoe opisanie zamknutykh podmodulei v spetsialnom module tselykh funktsii eksponentsialnogo tipa”, Matem. zametki, 46:6 (1989), 94–100 | MR | Zbl

[6] Krasichkov-Ternovskii I. F., “Spektralnyi sintez na sistemakh neogranichennykh vypuklykh oblastei”, Matem. sb., 111 (1980), 384–401 | MR

[7] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88:1 (1979), 3–30

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Gos. izd. fiz.-mat. literatury, M., 1959 | MR

[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gos. izd. tekhn. literatury, M., 1956

[10] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi, II”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 309–341 | MR

[11] Azarin V. S., “O razlozhenii tseloi funktsii konechnogo poryadka na somnozhiteli, imeyuschie zadannyi rost”, Matem. sb., 90:2 (1973), 229–230 | MR | Zbl

[12] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR | Zbl

[13] Burbaki N., Topologicheskie vektornye prostranstva, Izd-vo in. liter., M., 1959

[14] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi, I”, Izv. AN SSSR. Ser.matem., 43:1 (1979), 44–66 | MR