On the theory of braid groups
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 123-153

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in the braid group $B_n$ for $n\geqslant3$ any proper verbal subgroup $V(B_n)$ defined by a finite set of words $V$ has infinite width relative to $V$. In addition, it is proved that in a colored braid group the taking of roots is unique and that the only element conjugate to its inverse is the identity.
@article{SM_1993_76_1_a6,
     author = {V. G. Bardakov},
     title = {On the theory of braid groups},
     journal = {Sbornik. Mathematics},
     pages = {123--153},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a6/}
}
TY  - JOUR
AU  - V. G. Bardakov
TI  - On the theory of braid groups
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 123
EP  - 153
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a6/
LA  - en
ID  - SM_1993_76_1_a6
ER  - 
%0 Journal Article
%A V. G. Bardakov
%T On the theory of braid groups
%J Sbornik. Mathematics
%D 1993
%P 123-153
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a6/
%G en
%F SM_1993_76_1_a6
V. G. Bardakov. On the theory of braid groups. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 123-153. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a6/