Approximation of monotone functions by monotone polynomials
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 51-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem is proved for the case $k+r>2$. Theorem. If $k$, $r\in{\mathbb N}$, $I:=[-1,1]$, and the function $f=f(x)$ is nondecreasing on $I$ and has $r$ continuous derivatives, then for each positive integer $n\geqslant r + k - 1$ there is an algebraic polynomial $P_n = P_n(x)$ of degree $\leqslant n$ that is nondecreasing on $I$ and such that for all $x\in I$ $$ |f(x)-P_n(x)|\leqslant c\biggl({1\over n^2}+{\sqrt {1-x^2}\over n}\,\biggr)^r \omega _k\biggl(f^{(r)};{1\over n^2}+{\sqrt{1-x^2}\over n}\,\biggr), \qquad c=c(r,k), $$ where $\omega_k(f^{(r)};\,t)$ is the $k$th-order modulus of continuity of the function $f^{(r)}=f^{(r)}(x)$.
@article{SM_1993_76_1_a3,
     author = {I. A. Shevchuk},
     title = {Approximation of monotone functions by monotone polynomials},
     journal = {Sbornik. Mathematics},
     pages = {51--64},
     year = {1993},
     volume = {76},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/}
}
TY  - JOUR
AU  - I. A. Shevchuk
TI  - Approximation of monotone functions by monotone polynomials
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 51
EP  - 64
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/
LA  - en
ID  - SM_1993_76_1_a3
ER  - 
%0 Journal Article
%A I. A. Shevchuk
%T Approximation of monotone functions by monotone polynomials
%J Sbornik. Mathematics
%D 1993
%P 51-64
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/
%G en
%F SM_1993_76_1_a3
I. A. Shevchuk. Approximation of monotone functions by monotone polynomials. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/

[1] Shevchuk I. A., “O kopriblizhenii monotonnykh funktsii”, DAN SSSR, 308:3 (1989), 537–541 | MR

[2] Lorentz G. G., “Monotone approximation”, Inequalities, V. III, Acad. Press, New York, 1972, 201–215 | MR

[3] De Vore R. A., “Monotone approximation by polinomials”, SIAM J. Math. Anal., 8:5 (1977), 906–921 | DOI | MR | Zbl

[4] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[5] Lorentz G. G., Zeller K. L., “Degree of approximation by monotone polynomials, I”, J. Approx. Theory, 1:4 (1968), 501–504 | DOI | MR | Zbl

[6] De Vore R. A., “Degree of approximation”, Approximation Theory, V. II, Acad. Press, New York, 1976, 117–162 | MR

[7] Shvedov A. S., “Komonotonnoe priblizhenie mnogochlenami”, DAN SSSR, 250:1 (1980), 39–42 | MR

[8] De Vore R. A., Yu X. M., “Poinwise estimates for monotone polinomial approximation”, Constr. Approx., 1:4 (1985), 323–331 | DOI | MR

[9] Whitney H., “On functions with bounded $n$-th differences”, J. Math. Pures Appl., 36 (1957), 67–95 | MR | Zbl

[10] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988 | MR

[11] Marchaud A., “Sur les derivees et sur les differences des functions de variables reelles”, Math. Pures Appl., 6 (1927), 337–425 | Zbl

[12] Shevchuk I. A., “O svoistvakh mnogochlennykh yader Dzyadyka na otrezke”, Ukr. matem. zhurn., 41:4 (1989), 524–530 | MR | Zbl

[13] Brudnyi Yu. A., “Obobschenie odnoi teoremy A. F. Timana”, DAN SSSR, 188:6 (1963), 1237–1240 | MR

[14] Trigub R. M., “Priblizhenie funktsii mnogochlenami s tselymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 26:2 (1962), 261–280 | MR | Zbl

[15] Ševčuk I. A., “Extension of functions which are traces of functions belonging to $H_k^\varphi$ on arbitrary subset of the line”, Anal. Math., 10:3 (1984), 249–273 | DOI | MR | Zbl

[16] Dzyadyk V. K., Konovalov V. N., “Metod razlozheniya edinitsy v oblastyakh s kusochno-gladkoi granitsei na summu algebraicheskikh mnogochlenov dvukh peremennykh, imeyuschikh nekotorye svoistva yader”, Ukr. matem. zhurn., 25:2 (1973), 179–192 | MR