Approximation of monotone functions by monotone polynomials
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 51-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved for the case $k+r>2$. Theorem. If $k$, $r\in{\mathbb N}$, $I:=[-1,1]$, and the function $f=f(x)$ is nondecreasing on $I$ and has $r$ continuous derivatives, then for each positive integer $n\geqslant r + k - 1$ there is an algebraic polynomial $P_n = P_n(x)$ of degree $\leqslant n$ that is nondecreasing on $I$ and such that for all $x\in I$ $$ |f(x)-P_n(x)|\leqslant c\biggl({1\over n^2}+{\sqrt {1-x^2}\over n}\,\biggr)^r \omega _k\biggl(f^{(r)};{1\over n^2}+{\sqrt{1-x^2}\over n}\,\biggr), \qquad c=c(r,k), $$ where $\omega_k(f^{(r)};\,t)$ is the $k$th-order modulus of continuity of the function $f^{(r)}=f^{(r)}(x)$.
@article{SM_1993_76_1_a3,
     author = {I. A. Shevchuk},
     title = {Approximation of monotone functions by monotone polynomials},
     journal = {Sbornik. Mathematics},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/}
}
TY  - JOUR
AU  - I. A. Shevchuk
TI  - Approximation of monotone functions by monotone polynomials
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 51
EP  - 64
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/
LA  - en
ID  - SM_1993_76_1_a3
ER  - 
%0 Journal Article
%A I. A. Shevchuk
%T Approximation of monotone functions by monotone polynomials
%J Sbornik. Mathematics
%D 1993
%P 51-64
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/
%G en
%F SM_1993_76_1_a3
I. A. Shevchuk. Approximation of monotone functions by monotone polynomials. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/