Approximation of monotone functions by monotone polynomials
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 51-64
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved for the case $k+r>2$.
Theorem. If $k$, $r\in{\mathbb N}$, $I:=[-1,1]$, and the function $f=f(x)$ is nondecreasing on $I$ and has $r$ continuous derivatives, then for each positive integer $n\geqslant r + k - 1$ there is an algebraic polynomial $P_n = P_n(x)$ of degree $\leqslant n$ that is nondecreasing on $I$ and such that for all $x\in I$
$$
|f(x)-P_n(x)|\leqslant c\biggl({1\over n^2}+{\sqrt {1-x^2}\over n}\,\biggr)^r
\omega _k\biggl(f^{(r)};{1\over n^2}+{\sqrt{1-x^2}\over n}\,\biggr), \qquad
c=c(r,k),
$$
where $\omega_k(f^{(r)};\,t)$ is the $k$th-order modulus of continuity of the function
$f^{(r)}=f^{(r)}(x)$.
@article{SM_1993_76_1_a3,
author = {I. A. Shevchuk},
title = {Approximation of monotone functions by monotone polynomials},
journal = {Sbornik. Mathematics},
pages = {51--64},
publisher = {mathdoc},
volume = {76},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/}
}
I. A. Shevchuk. Approximation of monotone functions by monotone polynomials. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a3/