On some properties of regular set functions
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 247-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of uniform boundedness of a family of weakly regular nonadditive set functions (§ 2) and of continuity of a regular set function (§ 4). § 3 contains applications of the results to the study of set functions taking values in a topological group.
@article{SM_1993_76_1_a13,
     author = {V. M. Klimkin},
     title = {On some properties of regular set functions},
     journal = {Sbornik. Mathematics},
     pages = {247--263},
     year = {1993},
     volume = {76},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a13/}
}
TY  - JOUR
AU  - V. M. Klimkin
TI  - On some properties of regular set functions
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 247
EP  - 263
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a13/
LA  - en
ID  - SM_1993_76_1_a13
ER  - 
%0 Journal Article
%A V. M. Klimkin
%T On some properties of regular set functions
%J Sbornik. Mathematics
%D 1993
%P 247-263
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a13/
%G en
%F SM_1993_76_1_a13
V. M. Klimkin. On some properties of regular set functions. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 247-263. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a13/

[1] Aleksandrov A. D., “Additivnye funktsii mnozhestva v abstraktnykh prostranstvakh”, Matem. sb., 9 (51) (1941), 503–628

[2] Klimkin V. M., “Ravnomernaya ogranichennost semeistva neadditivnykh funktsii mnozhestv”, Matem. sb., 180:3 (1989), 385–396 | MR | Zbl

[3] Pakhaev B. V., “Ravnomernaya ogranichennost semeistva slabo regulyarnykh neadditivnykh otobrazhenii”, Matem. zametki, 34:1 (1983), 47–53 | MR | Zbl

[4] Sazhenkov A. N., “Printsip ravnomernoi ogranichennosti dlya topologicheskikh mer”, Matem. zametki, 31:2 (1982), 263–267 | MR | Zbl

[5] Diedonne J., “Sur la convergence des suites de measures de Radon”, An. Acad. Brasil. Sci., 23 (1951), 21–38 ; 277–282 | MR

[6] Kurka J., “Uniform boundedness principles for regular borel vector measures”, J. Austral. Math. Soc., A29:2 (1980), 206–218 | MR

[7] Stein J. D., “A uniform boundness theorem for measures”, Michigan. Math. J., 19:2 (1972), 161–165 | DOI | MR

[8] Wells B. B., “Weak compactness of measures”, Proc. Amer. Math. Soc., 20 (1969), 124–130 | DOI | MR | Zbl

[9] Morales P., “Boundedness for uniform semigroup-valued set functions”, Lect. Notes in Math., 1089, 1984, 153–164 | MR | Zbl

[10] Pap E., “O dijaqonalnoj theoremi”, Math. vestnik, 10:4 (1973), 391–399 | MR | Zbl

[11] Pap E., “A generalization of a theorem of Diedonne for $k$-triangular set functions”, Acta. Sci. Math., 50 (1986), 159–167 | MR | Zbl

[12] Weber H., “Compactness in spaces of group-valid contens, the Vitali – Hahn – Saks theorem and Nikodym boundedness theorem”, Rocky Mountain J. Math., 16:2 (1986) | MR | Zbl

[13] Hejcman J., 4-th Colloq., V. 1 (Budapest), Colloq. Math. Soc. Topoloque, 1978 | MR

[14] Hejcman J., “Boundedness in uniform spaces and topological groups”, Czech. Math. J., 9 (1959), 544–563 | MR