On two-dimensional polynomial interpolation
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 211-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A tuple $\mathfrak{N}=\{n_1,\,n_k;\,n\}$ of positive integers with $\sum_{\nu=1}^k n_\nu(n_\nu+1)=(n+1)(n+2)$ is said to be regular if there exists a set $U=\{u_1,\,\dots,\,u_k\}\subset\mathbb{R}^2$ such that the Hermite interpolation problem $(\mathfrak{N},\,U)$ is regular, i.e., for arbitrary numbers $\lambda_{(i,j),\nu}$, $i+j, $\nu=1,\dots,k$, there exists a unique polynomial $P(x,\,y)\in\pi_n(\mathbb{R}^2)$ such that $$ {\partial^{i+j}\over\partial x^i\partial y^j}P(x,y)\big|_{u_\nu}=\lambda_{(i,j),\nu},\qquad i+j<n_\nu,\quad \nu=1,\dots,k. $$ In this paper an algorithm is obtained that completely describes the regular and singular tuples $\mathfrak{N}$ under the condition that $n_{10}=1$. In the case when only the derivatives of order $n_\nu$ are interpolated, necessary and sufficient conditions are obtained for an arbitrary tuple $\mathfrak{N}$ to be regular.
@article{SM_1993_76_1_a11,
     author = {A. A. Akopian and O. V. Gevorgyan and A. A. Sahakian},
     title = {On two-dimensional polynomial interpolation},
     journal = {Sbornik. Mathematics},
     pages = {211--223},
     year = {1993},
     volume = {76},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a11/}
}
TY  - JOUR
AU  - A. A. Akopian
AU  - O. V. Gevorgyan
AU  - A. A. Sahakian
TI  - On two-dimensional polynomial interpolation
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 211
EP  - 223
VL  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a11/
LA  - en
ID  - SM_1993_76_1_a11
ER  - 
%0 Journal Article
%A A. A. Akopian
%A O. V. Gevorgyan
%A A. A. Sahakian
%T On two-dimensional polynomial interpolation
%J Sbornik. Mathematics
%D 1993
%P 211-223
%V 76
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a11/
%G en
%F SM_1993_76_1_a11
A. A. Akopian; O. V. Gevorgyan; A. A. Sahakian. On two-dimensional polynomial interpolation. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 211-223. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a11/

[1] Akopyan A. A., Gevorgyan O. V., Saakyan A. A., “O dvumernoi interpolyatsii Ermita”, Matem. zametki, 48:6 (1990), 137–139 | MR | Zbl

[2] Lorentz G. G., Lorentz R. A., “Multivariate interpolation”, Lecture Notes in Math., 1105, 1984, 136–144 | MR | Zbl

[3] Radon J., “Zur mechanischen kubatur”, Monatsh. Math., 52:4 (1948), 286–300 | DOI | MR | Zbl

[4] Chung K. C., Yao T. H., “On lattices admitting unique Lagrange interpolations”, SIAM J. Numer. Anal., 14 (1977), 735–741 | DOI | MR

[5] Lorentz R. A., “Some regular problems of bivariate interpolation”, Proceedings of the international conference on constructive theory of functions (Varna), 1984, 549–562 | Zbl

[6] Lorentz G. G., Lorentz R. A., “Bivariate Hermite interpolation and applications to algebraic geometry”, Numer. Math. (to appear) | MR

[7] Paskov S., “Singularity of bivariate interpolation”, Proc. intern. symp. on optimal algorithms (Varna), 1989 | MR | Zbl

[8] Uoker R., Algebraicheskie krivye, IL, M., 1952

[9] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, Nauka, M., 1968