On two-dimensional polynomial interpolation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 211-223
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A tuple $\mathfrak{N}=\{n_1,\,n_k;\,n\}$ of positive integers with $\sum_{\nu=1}^k n_\nu(n_\nu+1)=(n+1)(n+2)$ is said to be regular if there exists a set 
$U=\{u_1,\,\dots,\,u_k\}\subset\mathbb{R}^2$ such that the Hermite interpolation problem 
$(\mathfrak{N},\,U)$ is regular, i.e., for arbitrary numbers $\lambda_{(i,j),\nu}$, $i+j$, $\nu=1,\dots,k$, there exists a unique polynomial $P(x,\,y)\in\pi_n(\mathbb{R}^2)$ such that
$$
{\partial^{i+j}\over\partial x^i\partial y^j}P(x,y)\big|_{u_\nu}=\lambda_{(i,j),\nu},\qquad i+j\nu,\quad 
\nu=1,\dots,k. 
$$
In this paper an algorithm is obtained that completely describes the regular and singular tuples $\mathfrak{N}$ under the condition that $n_{10}=1$. In the case when only the derivatives of order $n_\nu$ are interpolated, necessary and sufficient conditions are obtained for an arbitrary tuple $\mathfrak{N}$ to be regular.
			
            
            
            
          
        
      @article{SM_1993_76_1_a11,
     author = {A. A. Akopian and O. V. Gevorgyan and A. A. Sahakian},
     title = {On two-dimensional polynomial interpolation},
     journal = {Sbornik. Mathematics},
     pages = {211--223},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a11/}
}
                      
                      
                    A. A. Akopian; O. V. Gevorgyan; A. A. Sahakian. On two-dimensional polynomial interpolation. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 211-223. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a11/
