$L_p$ extensions of Gonchar's inequality for rational functions
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 199-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a condenser $~(E,\, F)$ in the complex plane, let $~C(E,\, F)$ denote its capacity and let $~\mu^*=\mu_E^*-\mu_F^*$ be the (signed) equilibrium distribution for $~(E,\, F)$. Given a finite positive measure $\mu$ on $E\cup F$, let $$ G(\mu_E')=\exp\biggl(\,\int\log(d\mu/d\mu_E^*)\,d\mu_E^*\biggr),\quad G(\mu_F')=\exp\biggr(\,\int\log(d\mu/d\mu_F^*)\,d\mu_F^*\biggr). $$ We show that for $0$ and for any rational function $r_n$ of order $n$ \begin{equation} \|r_n\|_{L_p(d\mu,E)}\|1/r_n\|_{L_q(d\mu,F)}\geqslant e^{-n/C(E,F)}G^{1/p}(\mu_E') G^{1/q}(\mu_E'), \tag{1} \end{equation} which extends a classical result due to A. A. Gonchar. For a symmetric condenser we also obtain a sharp lower bound for $\|r_n-\lambda\|_{L_p(d\mu,\,E\cup F)}$, where $\lambda=\lambda(z)$ is equal to $0$ on $E$ and $1$ on $F$. The question of exactness of (1) and the relation to certain $n$-widths are also discussed.
@article{SM_1993_76_1_a10,
     author = {A. L. Levin and E. B. Saff},
     title = {$L_p$ extensions of {Gonchar's} inequality for rational functions},
     journal = {Sbornik. Mathematics},
     pages = {199--210},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a10/}
}
TY  - JOUR
AU  - A. L. Levin
AU  - E. B. Saff
TI  - $L_p$ extensions of Gonchar's inequality for rational functions
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 199
EP  - 210
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_1_a10/
LA  - en
ID  - SM_1993_76_1_a10
ER  - 
%0 Journal Article
%A A. L. Levin
%A E. B. Saff
%T $L_p$ extensions of Gonchar's inequality for rational functions
%J Sbornik. Mathematics
%D 1993
%P 199-210
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_1_a10/
%G en
%F SM_1993_76_1_a10
A. L. Levin; E. B. Saff. $L_p$ extensions of Gonchar's inequality for rational functions. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 199-210. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a10/