$L_p$ extensions of Gonchar's inequality for rational functions
Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 199-210
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a condenser $~(E,\, F)$ in the complex plane, let $~C(E,\, F)$ denote its capacity and let $~\mu^*=\mu_E^*-\mu_F^*$ be the (signed) equilibrium distribution for $~(E,\, F)$. Given a finite positive measure $\mu$ on $E\cup F$, let
$$
G(\mu_E')=\exp\biggl(\,\int\log(d\mu/d\mu_E^*)\,d\mu_E^*\biggr),\quad
G(\mu_F')=\exp\biggr(\,\int\log(d\mu/d\mu_F^*)\,d\mu_F^*\biggr).
$$
We show that for $0$ and for any rational function $r_n$ of order $n$
\begin{equation}
\|r_n\|_{L_p(d\mu,E)}\|1/r_n\|_{L_q(d\mu,F)}\geqslant e^{-n/C(E,F)}G^{1/p}(\mu_E')
G^{1/q}(\mu_E'),
\tag{1}
\end{equation}
which extends a classical result due to A. A. Gonchar. For a symmetric condenser we also obtain a sharp lower bound for $\|r_n-\lambda\|_{L_p(d\mu,\,E\cup F)}$, where $\lambda=\lambda(z)$ is equal to $0$ on $E$ and $1$ on $F$. The question of exactness of (1) and the relation to certain $n$-widths are also discussed.
@article{SM_1993_76_1_a10,
author = {A. L. Levin and E. B. Saff},
title = {$L_p$ extensions of {Gonchar's} inequality for rational functions},
journal = {Sbornik. Mathematics},
pages = {199--210},
publisher = {mathdoc},
volume = {76},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_1_a10/}
}
A. L. Levin; E. B. Saff. $L_p$ extensions of Gonchar's inequality for rational functions. Sbornik. Mathematics, Tome 76 (1993) no. 1, pp. 199-210. http://geodesic.mathdoc.fr/item/SM_1993_76_1_a10/