Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 491-505
Voir la notice de l'article provenant de la source Math-Net.Ru
The basic results of the theory of A. T. Fomenko on the topological properties of integrable Hamiltonian systems with two degrees of freedom are used to obtain the topological classification of geodesic flows on the torus $T^2$ with a Bott integral that is quadratic in the impulses, to state a criterion for a system to be a Bott system in terms of the function of the metric on $T^2$, to explicitly calculate the Fomenko invariant $W$ (an untagged molecule) and the Fomenko–Zieschang invariant $W^*$ (atagged molecule), and to completely describe the place occupied by the systems under consideration in the molecular table of complexity.
@article{SM_1993_75_2_a9,
author = {E. N. Selivanova},
title = {Classification of geodesic flows of {Liouville} metrics on the two-dimensional torus up to topological equivalence},
journal = {Sbornik. Mathematics},
pages = {491--505},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a9/}
}
TY - JOUR AU - E. N. Selivanova TI - Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence JO - Sbornik. Mathematics PY - 1993 SP - 491 EP - 505 VL - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a9/ LA - en ID - SM_1993_75_2_a9 ER -
E. N. Selivanova. Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 491-505. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a9/