Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 491-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic results of the theory of A. T. Fomenko on the topological properties of integrable Hamiltonian systems with two degrees of freedom are used to obtain the topological classification of geodesic flows on the torus $T^2$ with a Bott integral that is quadratic in the impulses, to state a criterion for a system to be a Bott system in terms of the function of the metric on $T^2$, to explicitly calculate the Fomenko invariant $W$ (an untagged molecule) and the Fomenko–Zieschang invariant $W^*$ (atagged molecule), and to completely describe the place occupied by the systems under consideration in the molecular table of complexity.
@article{SM_1993_75_2_a9,
     author = {E. N. Selivanova},
     title = {Classification of geodesic flows of {Liouville} metrics on the two-dimensional torus up to topological equivalence},
     journal = {Sbornik. Mathematics},
     pages = {491--505},
     year = {1993},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a9/}
}
TY  - JOUR
AU  - E. N. Selivanova
TI  - Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 491
EP  - 505
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a9/
LA  - en
ID  - SM_1993_75_2_a9
ER  - 
%0 Journal Article
%A E. N. Selivanova
%T Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence
%J Sbornik. Mathematics
%D 1993
%P 491-505
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a9/
%G en
%F SM_1993_75_2_a9
E. N. Selivanova. Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 491-505. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a9/

[1] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[2] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funktsion. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[3] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[4] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR

[5] Fomenko A. T., Tsishang Kh., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[6] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[7] Birkgof Dzh. D., Dinamicheskie sistemy, OGIZ, M., L., 1941

[8] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR