Compactness of the set of multisoliton solutions of the nonlinear Schr\"odinger equation
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 429-443

Voir la notice de l'article provenant de la source Math-Net.Ru

Multisoliton solutions $\psi(x,t)$ of the nonlinear Schrödinger equation are considered which satisfy the condition of finite density: $$ \lim_{x\to\pm\infty}\psi(x,t)=\frac12\omega e^{i\psi_\pm}. $$ It is proved that all these solutions satisfy the inequalities $$ \sup_{\substack{-\infty\infty\\-\infty\infty}}\biggl|\frac{\partial^m} {\partial t^m}\frac{\partial^n}{\partial x^n}\psi(x,\,t)\biggr|\leqslant\frac14 (2\omega)^{1+n+2m}(n+2m)! $$ ($m,n=0,1,2,\dots$), which implies solvability of the Cauchy problem for the nonlinear Schrödinger equation with an initial function $\psi(x,0)$ belonging to the closure of the set of nonreflecting potentials.
@article{SM_1993_75_2_a6,
     author = {D. Sh. Lundina and V. A. Marchenko},
     title = {Compactness of the set of multisoliton solutions of the nonlinear {Schr\"odinger} equation},
     journal = {Sbornik. Mathematics},
     pages = {429--443},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a6/}
}
TY  - JOUR
AU  - D. Sh. Lundina
AU  - V. A. Marchenko
TI  - Compactness of the set of multisoliton solutions of the nonlinear Schr\"odinger equation
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 429
EP  - 443
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a6/
LA  - en
ID  - SM_1993_75_2_a6
ER  - 
%0 Journal Article
%A D. Sh. Lundina
%A V. A. Marchenko
%T Compactness of the set of multisoliton solutions of the nonlinear Schr\"odinger equation
%J Sbornik. Mathematics
%D 1993
%P 429-443
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a6/
%G en
%F SM_1993_75_2_a6
D. Sh. Lundina; V. A. Marchenko. Compactness of the set of multisoliton solutions of the nonlinear Schr\"odinger equation. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 429-443. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a6/