Compactness of the set of multisoliton solutions of the nonlinear Schr\"odinger equation
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 429-443
Voir la notice de l'article provenant de la source Math-Net.Ru
Multisoliton solutions $\psi(x,t)$ of the nonlinear Schrödinger equation are considered which satisfy the condition of finite density:
$$
\lim_{x\to\pm\infty}\psi(x,t)=\frac12\omega e^{i\psi_\pm}.
$$
It is proved that all these solutions satisfy the inequalities
$$
\sup_{\substack{-\infty\infty\\-\infty\infty}}\biggl|\frac{\partial^m}
{\partial t^m}\frac{\partial^n}{\partial x^n}\psi(x,\,t)\biggr|\leqslant\frac14
(2\omega)^{1+n+2m}(n+2m)!
$$
($m,n=0,1,2,\dots$), which implies solvability of the Cauchy problem for the nonlinear Schrödinger equation with an initial function $\psi(x,0)$ belonging to the closure of the set of nonreflecting potentials.
@article{SM_1993_75_2_a6,
author = {D. Sh. Lundina and V. A. Marchenko},
title = {Compactness of the set of multisoliton solutions of the nonlinear {Schr\"odinger} equation},
journal = {Sbornik. Mathematics},
pages = {429--443},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a6/}
}
TY - JOUR AU - D. Sh. Lundina AU - V. A. Marchenko TI - Compactness of the set of multisoliton solutions of the nonlinear Schr\"odinger equation JO - Sbornik. Mathematics PY - 1993 SP - 429 EP - 443 VL - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a6/ LA - en ID - SM_1993_75_2_a6 ER -
D. Sh. Lundina; V. A. Marchenko. Compactness of the set of multisoliton solutions of the nonlinear Schr\"odinger equation. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 429-443. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a6/