Mixing, rank, and minimal self-joining of actions with an invariant measure
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 405-427

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that mixing transformations and flows of rank 1 have mixing of any multiplicity and a minimal self-joining of any order.
@article{SM_1993_75_2_a5,
     author = {V. V. Ryzhikov},
     title = {Mixing, rank, and minimal self-joining of actions with an invariant measure},
     journal = {Sbornik. Mathematics},
     pages = {405--427},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Mixing, rank, and minimal self-joining of actions with an invariant measure
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 405
EP  - 427
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/
LA  - en
ID  - SM_1993_75_2_a5
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Mixing, rank, and minimal self-joining of actions with an invariant measure
%J Sbornik. Mathematics
%D 1993
%P 405-427
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/
%G en
%F SM_1993_75_2_a5
V. V. Ryzhikov. Mixing, rank, and minimal self-joining of actions with an invariant measure. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 405-427. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/