Mixing, rank, and minimal self-joining of actions with an invariant measure
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 405-427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that mixing transformations and flows of rank 1 have mixing of any multiplicity and a minimal self-joining of any order.
@article{SM_1993_75_2_a5,
     author = {V. V. Ryzhikov},
     title = {Mixing, rank, and minimal self-joining of actions with an invariant measure},
     journal = {Sbornik. Mathematics},
     pages = {405--427},
     year = {1993},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Mixing, rank, and minimal self-joining of actions with an invariant measure
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 405
EP  - 427
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/
LA  - en
ID  - SM_1993_75_2_a5
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Mixing, rank, and minimal self-joining of actions with an invariant measure
%J Sbornik. Mathematics
%D 1993
%P 405-427
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/
%G en
%F SM_1993_75_2_a5
V. V. Ryzhikov. Mixing, rank, and minimal self-joining of actions with an invariant measure. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 405-427. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a5/

[1] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation”, Math. System Theory, 1 (1967), 1–49 | DOI | MR | Zbl

[2] Rudolph D., “An example of measure-preserving map with minimal self-joinings, and applications”, J. d'Analyse Math., 35 (1979), 97–122 | DOI | MR | Zbl

[3] del Junco A., Rahe A. M., Swanson L., “Chacon's automorphism has minimal self-joinings”, J. d'Analyse Math., 37 (1980), 276–284 | DOI | MR | Zbl

[4] del Junco A., “A family of caunter-examples in ergodic theory”, Israel J.Math., 44 (1983), 160–188 | DOI | MR | Zbl

[5] Ratner M., “Horocycle flows, joinings and rigidity of products”, Ann. Math., 118 (1983), 277–313 | DOI | MR | Zbl

[6] del Junco A., Park K., “An example of a measure-preserving flow with minimal self-joinings”, J. d'Analyse Math., 42 (1983), 199–211 | MR

[7] del Junco A., Rudolph D., “On ergodic actions whose self-joinings are graphs”, Ergod. Th. Dynam. Sys., 7 (1987), 531–557 | MR | Zbl

[8] King J., “The commutant is the weak closure of the powers, for the rank $-1$ transformation”, Ergod. Th. Dynam. Sys., 6 (1986), 363–384 | DOI | MR | Zbl

[9] King J., “Joinings-rank and the structure of finit rank mixing transformation”, J. d'Analyse Math., 51 (1988), 182–227 | DOI | MR | Zbl

[10] Host B., Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Preprint, Paris-Nord, Universitè 13, 1989 | MR

[11] Rokhlin V. A., “Ob endomorfizmakh kompaktnykh kommutativnykh grupp”, Izv. AN SSSR. Ser. matem., 13:4 (1949), 329–340 | MR | Zbl

[12] Ryzhikov V. V., “Zamechanie o kratnom peremeshivanii”, UMN, 44:1 (1989), 205–206 | MR | Zbl

[13] Marcus B., “The horocycle flow is mixing of all degrees”, Inv. Math., 46 (1978), 201–209 | DOI | MR | Zbl

[14] Ryzhikov V. V., “Svyaz peremeshivayuschikh svoistv potoka s izomorfizmom vkhodyaschikh v nego preobrazovanii”, Matem. zametki, 49:6 (1991), 98–106 | MR | Zbl

[15] Vershik A. M., Yuzvinskii S. A., “Dinamicheskie sistemy s invariantnoi meroi”, Itogi nauki. Matematicheskii analiz. 1967, VINITI, M., 1969, 133–187

[16] Ledrappier F., “Un champ marcovien peut être d'entropie null et mèlangeant”, C.R. Acad. Sci. Paris Ser. A, 287 (1978), 561–563 | MR | Zbl

[17] Ornstein D., “On the root problem in ergodic theory”, Proc. Sixth Berkley Symp. Math. Stat. Prob. II, 1967, 347–356 | MR

[18] Kalikov S. A., “Two fold mixing implies threefold mixing for rank one transformations”, Ergod. Th. Dynam. Sys., 4 (1984), 237–259

[19] Khalmosh P., Lektsii po ergodicheskoi teorii, IL, M., 1959

[20] Sinai Ya. G., “O slabom izomorfizme preobrazovanii s invariantnoi meroi”, Matem. sb., 63(105) (1964), 23–42 | MR

[21] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl

[22] Blum J. R., Hanson D. L., “On the mean ergodic theorem for subsequences”, Bull. Amer. Math. Soc., 66 (1960), 308–311 | DOI | MR | Zbl

[23] King J., Ergodic properties where order 4 implies infinit orders, Preprint, U.C. Berkely, 1990 | MR

[24] Ryzhikov V. V., Peremeshivanie, rang i minimalnoe samoprisoedinenie sokhranyayuschikh meru preobrazovanii, Preprint VINITI, 1991, s. 1–68