Methods of studying extremal metrics and moduli in a twisted Riemannian manifold
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 333-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author works out methods of studying the problems indicated in the title, which, in contrast to previous methods, do not require the explicit solution of the nonlinear system of integral and differential equations that arises. A number of new results are obtained, including the first correct solution of Pu's well-known problem in its original formulation.
@article{SM_1993_75_2_a2,
     author = {P. M. Tamrazov},
     title = {Methods of studying extremal metrics and moduli in a~twisted {Riemannian} manifold},
     journal = {Sbornik. Mathematics},
     pages = {333--351},
     year = {1993},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a2/}
}
TY  - JOUR
AU  - P. M. Tamrazov
TI  - Methods of studying extremal metrics and moduli in a twisted Riemannian manifold
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 333
EP  - 351
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a2/
LA  - en
ID  - SM_1993_75_2_a2
ER  - 
%0 Journal Article
%A P. M. Tamrazov
%T Methods of studying extremal metrics and moduli in a twisted Riemannian manifold
%J Sbornik. Mathematics
%D 1993
%P 333-351
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a2/
%G en
%F SM_1993_75_2_a2
P. M. Tamrazov. Methods of studying extremal metrics and moduli in a twisted Riemannian manifold. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 333-351. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a2/

[1] Pu P. M., “Some inequalities in certain nonorientable Riemannian manifolds”, Pacif. J. Math., 2:1 (1952), 55–71 | MR | Zbl

[2] Blatter Ch., “Zur Riemannischen Geometrie im Grossen auf dem Möbiusband”, Compos. Math., 15:1 (1960), 88–107 | MR

[3] Navoyan V. Kh., “Vychislenie modulya odnogo semeistva krivykh v «skruchennom» polnotorii”, Teoriya funktsii i topologiya, In-t matem. AN USSR, Kiev, 1983, 97–104 | MR

[4] Navoyan V. Kh., Tamrazov P. M., “Moduli semeistv nestyagivaemykh petel v «skruchennom» polnotorii”, Bull. Soc. Sci. et Lettr. de Lodz., 36:20 (1986), 1–5

[5] Tamrazov P. M., Metody issledovaniya ekstremalnykh metrik i modulei semeistv krivykh v skruchennom rimanovom mnogoobrazii, Preprint IM 88.43, Kiev, 1988

[6] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[7] Tamrazov P. M., Metod ekstremalnoi metriki i konformnoe otobrazhenie, Avtoref. diss. ... kand. fiz.-mat. nauk, Kiev, 1963

[8] Tamrazov P. M., “Teorema pro liniini integrali dlya ekstremalnoïdovzhini”, Dop. AN URSR. Ser. A, 1 (1966), 51–54 | MR

[9] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR

[10] Postnikov M. M., Vvedenie v teoriyu Morsa, Nauka, M., 1971 | MR

[11] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[12] Matematicheskaya entsiklopediya, t. 1, Sov. Entsikl., M., 1977

[13] Burago D. M., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl