On the question of regularity of the solutions of variational problems
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 535-556

Voir la notice de l'article provenant de la source Math-Net.Ru

Under the assumptions that $L(t,u,v)\in C(\mathbf R^3)$, $L_{vv}>\mu>0$, and $L>\mu v^2$ a study is made of the problem of minimizing the functional $\mathcal F(u(t))=\int_a^bL(t,u(t),\dot u(t))\,dt$ in the class of absolutely continuous functions $u(t)$ with $u(a)=A$ and $u(b)=B$. A direct method is presented for investigating the regularity of solutions and their dependence on the parameters of the problem. An example is given of a problem in which $L$ is analytic, $L_{vv}>\mu>0$, $L>\mu v^2$, and all the sequences minimizing the functional in the class of admissible smooth functions converge to a nonsmooth function $u_0(t)$ that is not a generalized solution of the Euler equation. An analogous example is given for the two-dimensional problem in the disk.
@article{SM_1993_75_2_a11,
     author = {M. A. Sychev},
     title = {On the question of regularity of the solutions of variational problems},
     journal = {Sbornik. Mathematics},
     pages = {535--556},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a11/}
}
TY  - JOUR
AU  - M. A. Sychev
TI  - On the question of regularity of the solutions of variational problems
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 535
EP  - 556
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a11/
LA  - en
ID  - SM_1993_75_2_a11
ER  - 
%0 Journal Article
%A M. A. Sychev
%T On the question of regularity of the solutions of variational problems
%J Sbornik. Mathematics
%D 1993
%P 535-556
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a11/
%G en
%F SM_1993_75_2_a11
M. A. Sychev. On the question of regularity of the solutions of variational problems. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 535-556. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a11/