@article{SM_1993_75_2_a10,
author = {Nguyen Tien Zung},
title = {The complexity of integrable {Hamiltonian} systems on a~prescribed three-dimensional constant-energy submanifold},
journal = {Sbornik. Mathematics},
pages = {507--533},
year = {1993},
volume = {75},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a10/}
}
TY - JOUR AU - Nguyen Tien Zung TI - The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold JO - Sbornik. Mathematics PY - 1993 SP - 507 EP - 533 VL - 75 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a10/ LA - en ID - SM_1993_75_2_a10 ER -
Nguyen Tien Zung. The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 507-533. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a10/
[1] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya i uporyadochivanie po slozhnosti integriruemykh gamiltonovykh sistem differentsialnykh uravnenii s dvumya stepenyami svobody. Spisok vsekh sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl
[2] Fomenko A. T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | MR | Zbl
[3] Fomenko A. T., Tsishang Kh., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl
[4] Matveev S. V., Fomenko A. T., Sharko V. V., “Kruglye funktsii Morsa i izoenergeticheskie poverkhnosti integriruemykh gamiltonovykh sistem”, Matem. sb., 135 (177) (1986), 325–345 | MR
[5] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, DAN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[6] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl
[7] Waldhausen F., “Eine Klasse von 3-dimensionalen Monnigfaltigkeiten. I, II”, Invent. Math., 3:4, 2 (1967) | DOI | MR | Zbl
[8] Lyndon R., Schupp P., Combinatorial group theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977 | MR | Zbl
[9] Jaco W., Shalen P., Seifert fibred spaces in 3-manifolds, Mem. Amer. Math. Soc., 220, 1979 | MR | Zbl
[10] Nguen Ten Zung, “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR
[11] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funktsion. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl
[12] Orlik P., Vogt E., Zieschang H., “Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten”, Topology, 6:1 (1967), 49–65 | DOI | MR
[13] Matveev S. V., Spetsialnye spainy i teoriya slozhnosti trekhmernykh mnogoobrazii, Doktorskaya dissertatsiya, Chelyabinsk, 1988
[14] Matveev S. V., “Teoriya slozhnosti trekhmernykh mnogoobrazii”, DAN SSSR, 301:2 (1988), 280–283
[15] Oshemkov A. A., “Topologiya izoenergeticheskikh poverkhnostei i bifurkatsionnye diagrammy integriruemykh sluchaev dinamiki tverdogo tela na $so(4)$”, UMN, 42:6 (1987), 199–200 | MR
[16] Oshemkov A. A., “Opisanie izoenergeticheskikh poverkhnostei nekotorykh integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Trudy seminara po vekt. i tenz. analizu, no. XXIII, Izd-vo MGU, M., 1988, 122–132 | MR
[17] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR
[18] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sistem v dinamike tverdogo tela”, DAN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl
[19] Kharlamov M. P., “K issledovaniyu oblastei vozmozhnosti dvizheniya v mekhanicheskikh sistemakh”, DAN SSSR, 267:3, 571–573 | MR | Zbl
[20] Nguen Ten Zung, Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh nevyrozhdennykh gamiltonianov na izoenergeticheskoi trekhmernoi sfere”, UMN, 45:6 (1990), 91–111 | MR
[21] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR
[22] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, M., 1989 | MR