The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 507-533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to a description of $Q$-regions, i.e., domains in the molecular table of Fomenko that are filled with integrable systems with constant energy surfaces $Q$ that occur most frequently in physics. Namely, the $Q$-regions for $Q=S^3$, $\mathbf RP^3$, $S^1\otimes S^2$, $T^3$, and $\overset l\#S^1\otimes S^2$ are computed explicitly. The $Q$-regions for an arbitrary three-dimensional constant energy submanifold $Q$ are determined up to a finite number of points. These results make it possible to predict the topological properties of integrable Hamiltonian systems as yet not discovered in physics. The concepts of the order of torsion of integrable Hamiltonian systems and of a minimal system are also introduced, and the connection between these concepts and the concepts of complexity of systems and complexity of three-manifolds due to Matveev is indicated.
@article{SM_1993_75_2_a10,
     author = {Nguyen Tien Zung},
     title = {The complexity of integrable {Hamiltonian} systems on a~prescribed three-dimensional constant-energy submanifold},
     journal = {Sbornik. Mathematics},
     pages = {507--533},
     year = {1993},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a10/}
}
TY  - JOUR
AU  - Nguyen Tien Zung
TI  - The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 507
EP  - 533
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a10/
LA  - en
ID  - SM_1993_75_2_a10
ER  - 
%0 Journal Article
%A Nguyen Tien Zung
%T The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold
%J Sbornik. Mathematics
%D 1993
%P 507-533
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a10/
%G en
%F SM_1993_75_2_a10
Nguyen Tien Zung. The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 507-533. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a10/

[1] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya i uporyadochivanie po slozhnosti integriruemykh gamiltonovykh sistem differentsialnykh uravnenii s dvumya stepenyami svobody. Spisok vsekh sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[2] Fomenko A. T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | MR | Zbl

[3] Fomenko A. T., Tsishang Kh., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[4] Matveev S. V., Fomenko A. T., Sharko V. V., “Kruglye funktsii Morsa i izoenergeticheskie poverkhnosti integriruemykh gamiltonovykh sistem”, Matem. sb., 135 (177) (1986), 325–345 | MR

[5] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, DAN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[6] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[7] Waldhausen F., “Eine Klasse von 3-dimensionalen Monnigfaltigkeiten. I, II”, Invent. Math., 3:4, 2 (1967) | DOI | MR | Zbl

[8] Lyndon R., Schupp P., Combinatorial group theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977 | MR | Zbl

[9] Jaco W., Shalen P., Seifert fibred spaces in 3-manifolds, Mem. Amer. Math. Soc., 220, 1979 | MR | Zbl

[10] Nguen Ten Zung, “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR

[11] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funktsion. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[12] Orlik P., Vogt E., Zieschang H., “Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten”, Topology, 6:1 (1967), 49–65 | DOI | MR

[13] Matveev S. V., Spetsialnye spainy i teoriya slozhnosti trekhmernykh mnogoobrazii, Doktorskaya dissertatsiya, Chelyabinsk, 1988

[14] Matveev S. V., “Teoriya slozhnosti trekhmernykh mnogoobrazii”, DAN SSSR, 301:2 (1988), 280–283

[15] Oshemkov A. A., “Topologiya izoenergeticheskikh poverkhnostei i bifurkatsionnye diagrammy integriruemykh sluchaev dinamiki tverdogo tela na $so(4)$”, UMN, 42:6 (1987), 199–200 | MR

[16] Oshemkov A. A., “Opisanie izoenergeticheskikh poverkhnostei nekotorykh integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Trudy seminara po vekt. i tenz. analizu, no. XXIII, Izd-vo MGU, M., 1988, 122–132 | MR

[17] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[18] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sistem v dinamike tverdogo tela”, DAN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl

[19] Kharlamov M. P., “K issledovaniyu oblastei vozmozhnosti dvizheniya v mekhanicheskikh sistemakh”, DAN SSSR, 267:3, 571–573 | MR | Zbl

[20] Nguen Ten Zung, Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh nevyrozhdennykh gamiltonianov na izoenergeticheskoi trekhmernoi sfere”, UMN, 45:6 (1990), 91–111 | MR

[21] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR

[22] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, M., 1989 | MR