The Helmholtz resonator and the theory of operator extensions in a space with indefinite metric
Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 285-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To investigate the Helmholtz resonator a model is developed based on the theory of selfadjoint extensions of symmetric operators in a space with indefinite metric. In the case of a small opening compared to the wavelength, approximations of any predetermined precision are obtained for the Green functions of the Dirichlet and Neumann problems for the Helmholtz resonator. The problem of resonances is considered in the framework of the Lax–Phillips approach. Formulae to determine the resonances with any required precision are obtained and substantiated.
@article{SM_1993_75_2_a0,
     author = {I. Yu. Popov},
     title = {The {Helmholtz} resonator and the~theory of operator extensions in a~space with indefinite metric},
     journal = {Sbornik. Mathematics},
     pages = {285--315},
     year = {1993},
     volume = {75},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_2_a0/}
}
TY  - JOUR
AU  - I. Yu. Popov
TI  - The Helmholtz resonator and the theory of operator extensions in a space with indefinite metric
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 285
EP  - 315
VL  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_2_a0/
LA  - en
ID  - SM_1993_75_2_a0
ER  - 
%0 Journal Article
%A I. Yu. Popov
%T The Helmholtz resonator and the theory of operator extensions in a space with indefinite metric
%J Sbornik. Mathematics
%D 1993
%P 285-315
%V 75
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_75_2_a0/
%G en
%F SM_1993_75_2_a0
I. Yu. Popov. The Helmholtz resonator and the theory of operator extensions in a space with indefinite metric. Sbornik. Mathematics, Tome 75 (1993) no. 2, pp. 285-315. http://geodesic.mathdoc.fr/item/SM_1993_75_2_a0/

[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo LGU, L., 1975

[2] Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H., Solvable models in quantum mechanics, Springer-Verlag, Berlin, Heidelberg, New York, 1988 | MR | Zbl

[3] Pavlov B. S., “Teoriya rasshirenii i yavnoreshaemye modeli”, UMN, 42 (1987), 99–131

[4] Popov I. Yu., “The extension theory and diffraction problems”, Lect. Notes in Phys., 324 (1989), 218–229 | DOI | MR | Zbl

[5] Popov I. Yu., DAN SSSR, 313 (1990), 806–811 | MR | Zbl

[6] Gotlib V. Yu., “Rasseyanie na krugovom rezonatore s uzkoi schelyu kak zadacha teorii vozmuschenii”, DAN SSSR, 287 (1986), 1109–1113 | MR

[7] Popov I. Yu., “Schel nulevoi shiriny i uslovie Dirikhle”, DAN SSSR, 294 (1987), 330–334 | MR

[8] Popov I. Yu., “Obosnovanie modeli schelei nulevoi shiriny dlya zadachi Dirikhle”, Sib. matem. zhurn., 30 (1989), 225–230

[9] Relei Dzh., Teoriya zvuka, Gostekhizdat, M., 1955

[10] Gadylshin R. R., “Ob amplitude kolebanii dlya rezonatora Gelmgoltsa”, DAN SSSR, 310 (1990), 1094–1097 | MR

[11] Shondin Yu. G., “Kvantovomekhanicheskie modeli v $\mathbb{R}_n$, svyazannye s rasshireniem operatora energii v prostranstve Pontryagina”, TMF, 74 (1988), 331–344 | MR | Zbl

[12] Berezin F. A., “O modeli Li”, Matem. sb., 60(102) (1963), 425–446 | MR

[13] Mors F., Feshbakh G., Metody teoreticheskoi fiziki, t. 2, IL, M., 1960

[14] Popov I. Yu., “A model of zero-width slits and the real diffraction problem”, Operator Theory: Advances and Applications, 46, Birkhauser Verlag, Basel, 1990, 73–82

[15] Mikhlin S. G., Integralnye uravneniya i ikh prilozheniya, GITTL, M.–L., 1949

[16] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[17] Lyapunov A. M., “O nekotorykh voprosakh, svyazannykh s zadachei Dirikhle”, J. Math. Pures Appl., 4:5 (1898), 241–311 | MR

[18] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116(158) (1981), 187–217 | MR

[19] Lazutkin V. F., “Kompleksnyi billiard”, Problemy matematicheskoi fiziki, t. 2, Izd-vo LGU, L., 1986, 138–164 | MR

[20] Belorusets V. B., Fikhmanas R. F., “Raschet sobstvennoi chastoty i dobrotnosti rezonatora s malym otverstiem svyazi”, Tekhnika sredstv svyazi. Ser. Radioizmerit. tekhnika, 3 (1976), 8–12

[21] Petras S. V., “O rasscheplenii serii rezonansov na «nefizicheskom» liste”, Funktsion. analiz i ego pril., 9:2 (1975), 89–90 | MR | Zbl

[22] Laks P., Fillips R., Teoriya rasseyaniya, Mir, M., 1971 | MR

[23] Laks P., Fillips R., Teoriya rasseyaniya dlya avtomorfnykh funktsii, Mir, M., 1979

[24] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Matem. sb., 84 (126) (1971), 607–629 | MR | Zbl

[25] Pavlov B. S., “Faktorizatsiya matritsy rasseyaniya i seriinaya struktura ee kornei”, Izv. AN SSSR. Ser. matem., 37 (1973), 217–246 | Zbl

[26] Potapov V. P., “Multiplikativnaya struktura $J$-nerastyagivayuschikh matrits-funktsii”, Trudy MMO, 4 (1955), 125–236 | MR | Zbl

[27] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982 | MR | Zbl

[28] Petkov V., “High frequency asymptotics of the scattering amplitude for non-convex bodies”, Comm. Part. Diff. Equations, 5 (1980), 293–329 | DOI | MR | Zbl

[29] Lax P. D., Phillips R. S., “The scattering of sound waves by an obstacle”, Comm. Pure Appl. Math., 30 (1977), 195–233 | DOI | MR

[30] Popov I. Yu., “Teoriya rasshirenii i lokalizatsiya rezonansov dlya oblastei lovushechnogo tipa”, Matem. sb., 181 (1990), 1366–1390

[31] Lax P. D., Phillips R. S., “Scattering theory for the acoustic equation in an even number of space dimensions”, Indiana Univ. Math. Jour., 22 (1972), 101–134 | DOI | MR | Zbl