The Plemelj–Privalov theorem for generalized Hölder classes
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 165-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Plemelj–Privalov theorem on invariance of the Hölder classes $H_\alpha$, $0<\alpha<1$, with respect to a one-dimensional singular integral with Cauchy kernel on closed smooth Jordan curves is well known. V. V. Salaev posed the problem of describing the class $\Pi_\alpha$ of all closed rectifiable Jordan curves on which the Plemelj–Privalov theorem is valid; it was solved in a paper by Salaev, Guseinov, and Seifullaev, where a condition completely characterizing the class $ \Pi_\alpha$ is given in terms of the planar measure of boundary strips of sets constructed from the curve. The present article is devoted to the solution of Salaev's problem for the generalized Hölder class $H_\varphi$.
@article{SM_1993_75_1_a9,
     author = {E. G. Guseinov},
     title = {The {Plemelj{\textendash}Privalov} theorem for generalized {H\"older} classes},
     journal = {Sbornik. Mathematics},
     pages = {165--182},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a9/}
}
TY  - JOUR
AU  - E. G. Guseinov
TI  - The Plemelj–Privalov theorem for generalized Hölder classes
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 165
EP  - 182
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a9/
LA  - en
ID  - SM_1993_75_1_a9
ER  - 
%0 Journal Article
%A E. G. Guseinov
%T The Plemelj–Privalov theorem for generalized Hölder classes
%J Sbornik. Mathematics
%D 1993
%P 165-182
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a9/
%G en
%F SM_1993_75_1_a9
E. G. Guseinov. The Plemelj–Privalov theorem for generalized Hölder classes. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 165-182. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a9/

[1] Plemelj J., “Ein Erganzungssatz zur Cauchy'schen Integraldarstellung analytischer Funktionen, Randwerte betreffend”, Monatsh. für Math. und Phys., 19 (1908), 205–210 | DOI | MR | Zbl

[2] Privaloff I., “Sur les fonctions conjuguees”, Bull. Soc. Math. France, 44:2–3 (1916), 100–103 | MR

[3] Privalov I. I., “Ob integralakh tipa Koshi”, DAN SSSR, 23:9 (1939), 859–862

[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962

[5] Davydov N. A., “Nepreryvnost integrala tipa Koshi v zamknutoi oblasti”, DAN SSSR, 64:6 (1949), 759–762 | MR | Zbl

[6] Zygmund A., “Sur le module de continuite de la somme de la serie oonjuguee de la serie de Fourier”, Prace Matematyczno - Fizyczne, 33 (1924), 125–132 | Zbl

[7] Magnaradze L. G., “Ob odnom obobschenii teoremy Plemelya - Privalova”, Soobscheniya AN GSSR, 8:8 (1947), 509–516 | MR | Zbl

[8] Babaev A. A., Salaev V. V., “Ob odnom analoge teoremy Plemelya-Privalova v sluchae negladkikh krivykh i ee prilozheniyakh”, DAN SSSR, 161:2 (1965), 267–269 | MR

[9] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5 (1956), 483–522 | MR | Zbl

[10] Babaev A. A., Salaev V. V., “Odnomernyi singulyarnyi operator s nepreryvnoi plotnostyu po zamknutoi krivoi”, DAN SSSR, 209:6 (1973), 1257–1260 | MR | Zbl

[11] Salaev V. V., “Pryamye i obratnye otsenki dlya osobogo integrala Koshi po zamknutoi krivoi”, Matem. zametki, 19:3 (1976), 365–380 | MR | Zbl

[12] Salimov T. S., “Pryamaya otsenka dlya singulyarnogo integrala Koshi po zamknutoi krivoi”, Nauchnye trudy MV i SSO Azerb. SSR. Ser. fiz.-matem. n., 1979, no. 5, 59–75 | MR

[13] Dynkin E. M., “Gladkost integralov tipa Koshi”, Zap. nauch. sem. LOMI., 92, 1979, 115–133 | MR

[14] Salimov T. S., “Obratnaya otsenka dlya osobogo integrala Koshi po zamknutoi krivoi”, Issledov. po linein. operat. i ikh prilozh., Azgoouniv., Baku, 1982, 162–177 | MR

[15] Salaev V. V., Guseinov E. G., Seifullaev R. K., “Teorema Plemelya - Privalova”, DAN SSSR, 315:4 (1990), 790–793 | MR | Zbl

[16] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[17] Poznyak E. G., Shikin E. V., “Formula Grina dlya oblastei so spryamlyaemoi granitsei”, DAN SSSR, 253:1 (1980), 42–44 | MR | Zbl

[18] Salimov T. S., “Singulyarnyi integral Koshi v prostranstvakh $H_\alpha$”, Singulyarnye integralnye operatory, Azgosuniversitet, Baku, 1983, 64–82 | MR