Some problems in approximation theory for a class of functions of finite smoothness
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 145-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper concerns the problem of best accuracy in recovering functions from their values at a specified number of points, the problem of best approximation of partial differential operators by bounded operators, and the problem of the accuracy of approximation of one class by another for a class of functions with partial derivatives of a fixed order having moduli of continuity not exceeding a given modulus of continuity. The weak asymptotic behavior is established for the corresponding quantities.
@article{SM_1993_75_1_a8,
     author = {S. N. Kudryavtsev},
     title = {Some problems in approximation theory for a~class of functions of finite smoothness},
     journal = {Sbornik. Mathematics},
     pages = {145--164},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a8/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - Some problems in approximation theory for a class of functions of finite smoothness
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 145
EP  - 164
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a8/
LA  - en
ID  - SM_1993_75_1_a8
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T Some problems in approximation theory for a class of functions of finite smoothness
%J Sbornik. Mathematics
%D 1993
%P 145-164
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a8/
%G en
%F SM_1993_75_1_a8
S. N. Kudryavtsev. Some problems in approximation theory for a class of functions of finite smoothness. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 145-164. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a8/

[1] Babenko K. I., Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1979 | MR

[2] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[3] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[4] Traub Dzh., Vozhnyakovskii Kh., Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983 | MR | Zbl

[5] Arestov V. V., “O nailuchshem priblizhenii operatorov differentsirovaniya”, Matem. zametki, 1:2 (1967), 149–154 | MR | Zbl

[6] Arestov V. V., “O nailuchshem ravnomernom priblizhenii operatorov differentsirovaniya”, Matem. zametki, 5:3 (1969), 273–284 | MR | Zbl

[7] Buslaev A. P., “O nailuchshem priblizhenii operatora differentsirovaniya”, DAN SSSR, 248:5 (1979), 1041–1044 | MR | Zbl

[8] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | Zbl

[9] Arestov V. V., Gabushin V. N., “O priblizhenii klassov differentsiruemykh funktsii”, Matem. zametki, 9:2 (1971), 105–112 | MR | Zbl

[10] Korneichuk N. P., “Neravenstva dlya differentsiruemykh periodicheskikh funktsii i nailuchshee priblizhenie odnogo klassa funktsii drugim”, Izv. AN SSSR. Ser. matem., 36:2 (1972), 423–434

[11] Subbotin Yu. N., “Nailuchshee priblizhenie klassa funktsii drugim klassom”, Matem. zametki, 2:5 (1967), 495–504 | MR | Zbl

[12] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR