Classifying spaces for free actions, and the Hilbert--Smith conjecture
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 137-144

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any free action of a zero-dimensional compact group $G$ on the $n$-dimensional Menger compactum $M_n$ is $n$-universal for free actions, and that the orbit space $M_n/G$ is $n$-classifying. Nonexistence of equivariant mappings between $M_{n+m}$ and $M_n$ implies that the orbit space $R/A_p$ has infinite dimension, where $R$ is any compact ANR-space with free action of the group $A_p$ of $p$-adic integers. Knowledge of such nonexistence would then permit proof of the Hilbert–Smith conjecture under the assumption of finite dimensionality for the orbit space.
@article{SM_1993_75_1_a7,
     author = {S. M. Ageev},
     title = {Classifying spaces for free actions, and the {Hilbert--Smith} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {137--144},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Classifying spaces for free actions, and the Hilbert--Smith conjecture
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 137
EP  - 144
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/
LA  - en
ID  - SM_1993_75_1_a7
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Classifying spaces for free actions, and the Hilbert--Smith conjecture
%J Sbornik. Mathematics
%D 1993
%P 137-144
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/
%G en
%F SM_1993_75_1_a7
S. M. Ageev. Classifying spaces for free actions, and the Hilbert--Smith conjecture. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 137-144. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/