Classifying spaces for free actions, and the Hilbert–Smith conjecture
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 137-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that any free action of a zero-dimensional compact group $G$ on the $n$-dimensional Menger compactum $M_n$ is $n$-universal for free actions, and that the orbit space $M_n/G$ is $n$-classifying. Nonexistence of equivariant mappings between $M_{n+m}$ and $M_n$ implies that the orbit space $R/A_p$ has infinite dimension, where $R$ is any compact ANR-space with free action of the group $A_p$ of $p$-adic integers. Knowledge of such nonexistence would then permit proof of the Hilbert–Smith conjecture under the assumption of finite dimensionality for the orbit space.
@article{SM_1993_75_1_a7,
     author = {S. M. Ageev},
     title = {Classifying spaces for free actions, and the {Hilbert{\textendash}Smith} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {137--144},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Classifying spaces for free actions, and the Hilbert–Smith conjecture
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 137
EP  - 144
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/
LA  - en
ID  - SM_1993_75_1_a7
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Classifying spaces for free actions, and the Hilbert–Smith conjecture
%J Sbornik. Mathematics
%D 1993
%P 137-144
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/
%G en
%F SM_1993_75_1_a7
S. M. Ageev. Classifying spaces for free actions, and the Hilbert–Smith conjecture. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 137-144. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a7/

[1] Bredon G. E., Raymond F., Williams R. F., “$p$-Adic groups transformation”, Trans. AMS, 99 (1961), 488–498 | DOI | MR | Zbl

[2] Dranishnikov A. N., “O svobodnykh deistviyakh nulmernykh kompaktnykh grupp”, Izv. AN SSSR. Ser. matem., 52 (1988), 212–228 | MR | Zbl

[3] Dranishnikov A. N., “Gomologicheskaya teoriya razmernosti”, UMN, 43:4 (1988), 11–55 | MR

[4] Ageev S. M., Mengerovskie kompakty s deistviyami kompaktnykh grupp, Obschaya topologiya. Prostranstva, otobrazheniya i funktory, Izd-vo MGU, M., 1991

[5] Borel A., Seminar on transformation groups, Ann. Math. Studies, 46, Princeton University Press, 1960 | MR | Zbl

[6] Dik T., Gruppy preobrazovanii i teoriya predstavlenii, Mir, M., 1982 | MR

[7] Dranishnikov A. N., “Absolyutnye ekstenzory v razmernosti $n$ i $n$-myagkie otobrazheniya, povyshayuschie razmernost”, UMN, 39:5 (1984), 55–95 | MR | Zbl

[8] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[9] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[10] Pasynkov B. A., “Chastichnye topologicheskie proizvedeniya”, Tr. MMO, 13 (1965), 136–245 | MR

[11] Bestvina M., Characterizing $k$-dimensional unversal Menger compacta, Memoirs AMS, 71, no. 380, 1988 | MR | Zbl