Asymptotic solutions of the system of elasticity theory for rod and frame structures
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 85-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Full asymptotic solutions are constructed for the system of equations of elasticity theory for a rod (a thin cylinder whose cross-section diameter is a small parameter), a rod structure (a connected aggregate of several rods), and frame domains. The limiting equations and matching conditions are obtained.
@article{SM_1993_75_1_a4,
     author = {G. P. Panasenko},
     title = {Asymptotic solutions of the system of elasticity theory for rod and frame structures},
     journal = {Sbornik. Mathematics},
     pages = {85--110},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a4/}
}
TY  - JOUR
AU  - G. P. Panasenko
TI  - Asymptotic solutions of the system of elasticity theory for rod and frame structures
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 85
EP  - 110
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a4/
LA  - en
ID  - SM_1993_75_1_a4
ER  - 
%0 Journal Article
%A G. P. Panasenko
%T Asymptotic solutions of the system of elasticity theory for rod and frame structures
%J Sbornik. Mathematics
%D 1993
%P 85-110
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a4/
%G en
%F SM_1993_75_1_a4
G. P. Panasenko. Asymptotic solutions of the system of elasticity theory for rod and frame structures. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 85-110. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a4/

[1] Bakhvalov N. S, Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Panasenko G. P., “Printsip rasschepleniya osrednennogo operatora dlya nelineinoi sistemy uravnenii v periodicheskikh i sluchainykh karkasnykh konstruktsiyakh”, DAN SSSR, 263:1 (1982), 35–40 | MR | Zbl

[3] Panasenko G. P., “Osrednenie protsessov v karkasnykh konstruktsiyakh so sluchainymi svoistvami”, ZhVMiMF, 23:5 (1983), 1098–1109 | MR | Zbl

[4] Panasenko G. P., Matematicheskoe issledovanie protsessov v periodicheskikh strukturakh, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1988, 311 pp.

[5] Panasenko G. P., “Osrednenie protsessov v silno neodnorodnykh strukturakh”, DAN SSSR, 298:1 (1988), 76–79 | MR

[6] Oleinik O. A., Yosifian G. A., “On the asymptotic behaviour at infinity of solutions of linear elasticity”, Arch. Rat. Mech. and Anal., 78:1 (1982), 29–53 | MR | Zbl

[7] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo LGU, L., 1984

[8] Pshenichnov G. I., Teoriya tonkikh uprugikh setchatykh obolochek i plastinok, Nauka, M., 1982

[9] Panasenko G. P., Asimptoticheskie resheniya sistemy uravnenii teorii uprugosti dlya sterzhnei, sterzhnevykh konstruktsii i karkasnykh struktur, Dep. v VINITI 05.12.90, No6107-V90, M., 1990, 71 pp.

[10] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo Mosk. un-ta, M., 1990 | MR | Zbl