On the determination of the radius of univalence of a regular function from its Taylor coefficients
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 43-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Formulas determining the radius of univalence of a regular function from its Taylor coefficients are considered. The main attention is given to geometric interpretation of the formulas.
@article{SM_1993_75_1_a2,
     author = {D. V. Yur'ev},
     title = {On the determination of the radius of univalence of a~regular function from its {Taylor} coefficients},
     journal = {Sbornik. Mathematics},
     pages = {43--59},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a2/}
}
TY  - JOUR
AU  - D. V. Yur'ev
TI  - On the determination of the radius of univalence of a regular function from its Taylor coefficients
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 43
EP  - 59
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a2/
LA  - en
ID  - SM_1993_75_1_a2
ER  - 
%0 Journal Article
%A D. V. Yur'ev
%T On the determination of the radius of univalence of a regular function from its Taylor coefficients
%J Sbornik. Mathematics
%D 1993
%P 43-59
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a2/
%G en
%F SM_1993_75_1_a2
D. V. Yur'ev. On the determination of the radius of univalence of a regular function from its Taylor coefficients. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 43-59. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a2/

[1] Shabat B. V., Vvedenie v kompleksnyi analiz, t. 1, Nauka, M., 1985 | MR

[2] Kuzmina G. V., “Chislennoe opredelenie radiusov odnolistnosti analiticheskikh funktsii”, Tr. MIAN, 53 (1959), 192–235 | MR | Zbl

[3] Wolibner W., “Sur certaines conditions necessaires et suffisantes pour qu'une fonction analytique soit univalent”, Coll. Math., 2:3–4 (1951), 249–253 | MR | Zbl

[4] Yurev D. V., “O radiuse odnolistnosti regulyarnoi funktsii”, Funktsion. analiz i ego prilozh., 24:1 (1990), 90–91 | MR

[5] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1968 | MR

[6] Duren P. L., Univalent functions, Springer, 1983 | MR | Zbl

[7] Schober G., Univalent functions - selected topics, Lect. Notes Math., 478, 1975 | MR | Zbl

[8] Gardiner F. P., Teichmüller theory and quadratic differentials, Wiley Interscience, NY, 1988 | MR

[9] Grunsky H., “Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen”, Math. Zeitschrift, 45 (1939), 21–61 | DOI | MR

[10] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[11] Duren P. L., Schiffer M. M., “Goluzin inequalities and minimum energy for mappings onto nonoverlapping regions”, Ann. Acad. Fenn. AI, 15:1 (1990), 133–150 | MR | Zbl

[12] Duren P. L., Schiffer M. M., Sharpened forms of the Grunsky inequalities, Preprint Univ. Michigan, 1990 | MR

[13] Schur I., “On Faber polynomials”, Amer. J. Math., 67:I (1945), 33–41 | DOI | MR | Zbl

[14] Schiffer M., “A method of variation within the family of simple functions”, Proc. London Math Soc. Ser. 2, 42 (1938), 432–449 | DOI

[15] Schiffer M., “Variation of the Green function and the theory of the $p$-valued functions”, Amer. J. Math., 65:2 (1943), 341–360 | DOI | MR | Zbl

[16] Kirillov A. A., Yurev D. V., “Kelerova geometriya beskonechnomernogo odnorodnogo prostranstva $M = {\operatorfont{Diff}}_+ (S^1)/{\operatorfont{Rot}} (S^1)$”, Funktsion. analiz i ego pril., 21:4 (1987), 35–46 | MR | Zbl

[17] Kirillov A. A., Yuriev D. V., “Representations of Virasoro algebra by the orbit method”, J. Geom. Phys., 5:3 (1988), 351–363 | DOI | MR | Zbl

[18] Kirillov A. A., “Kelerova struktura na $K$-orbitakh gruppy diffeomorfizmov okruzhnosti”, Funktsion. analiz i ego pril., 21:2 (1987), 42–45 | MR | Zbl

[19] Lagutkin V., Pankratova T., “Normalnye formy i deformatsii dlya uravneniya Khilla”, Funktsion. analiz i ego pril., 9:4 (1975), 41–48 | MR

[20] Segal G., “Unitary representations of some infinite dimensional groups”, Comm. Math. Phys., 80 (1981), 301–342 | DOI | MR | Zbl

[21] Kirillov A. A., “Infinite dimensional Lie groups, their orbits, invariants and representations”, Lect. Notes Math., 970 (1982), 101–123 | DOI | MR | Zbl

[22] Bergman S., The kernel function and conformal mapping, New York, 1950 | MR

[23] Bowick M. J., Rajeev S. G., “The holomorphic geometry of closed bosonic string theory and ${\operatorfont{Diff}} S^1/S^1$”, Nucl. Phys., 293 (1987), 348–384 | DOI | MR

[24] Gelfand I. M., Fuks D. B., “Kogomologii algebry Li vektornykh polei na okruzhnosti”, Funktsion. analiz i ego pril., 2:4 (1968), 92–93 | MR

[25] Virasoro M. A., “Subsidiary conditions and ghosts in dualresonance models”, Phys. Rev. D, 1 (1970), 2933–2936 | DOI

[26] Bott R., “On the characteristic classes of groups of diffeomorphisms”, Enseign. Math., 23 (1977), 209–220 | MR | Zbl

[27] Kac V. G., “Contravariant form for infinite-dimensional Lie algebras and superalgebras”, Lect. Notes Phys., 94 (1979), 441–445 | DOI | Zbl

[28] Feigin B. L., Fuks D. B., “Kososimmetricheskie invariantnye differentsialnye operatory na pryamoi i moduli Verma nad algebroi Virasoro”, Funktsion. analiz i ego pril., 16:2 (1982), 47–63 | MR | Zbl

[29] Feigin B. L., Fuks D. B., “Moduli Verma nad algebroi Virasoro”, Funktsion. analiz i ego pril., 17:3 (1983), 94–92 | MR

[30] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[31] Neretin Yu. A., “Predstavleniya algebry Virasoro i affinnykh algebr”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 22, VINITI, M., 1988, 163–224 | MR

[32] Cartan E., “Sur les domaines bornés homogènes de l'espace de $n$ variables complexes”, Oeuvres completes, P. 1. V. 2, Paris, 1955, 1259–1306

[33] Pressley A., Segal G., Loop groups, Clarendon Press, Oxford, 1986 | MR | Zbl

[34] Fredholm I., “Sur une classe d'equations fonctionnelles”, Acta Mathem., 27 (1903), 365–390 | DOI | MR | Zbl

[35] Lehto O., Univalent functions and Teichmüller spaces, Springer, 1986 | MR

[36] Borel A., Weil A., Representations lineares et espaces homogenes kähleriens des groupes de Lie compacts, Sem. Bourbaki, 100, 1954

[37] Atiyah M. F., Schmid W., “A geometric construction of the discrete series”, Invent. Math., 42 (1977), 1–62 | DOI | MR | Zbl

[38] Guiilemin V,, Sternberg S., Symplectic techniques in physics, Cambridge Univ. Press, 1984 | MR