Strictly hypoelliptic operators with constant coefficients
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 265-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of strictly hypoelliptic operators intermediate between the very broad set of hypoelliptic polynomials and the essentially smaller class of elliptic polynomials is described.
@article{SM_1993_75_1_a15,
     author = {G. G. Kazaryan},
     title = {Strictly hypoelliptic operators with constant coefficients},
     journal = {Sbornik. Mathematics},
     pages = {265--276},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a15/}
}
TY  - JOUR
AU  - G. G. Kazaryan
TI  - Strictly hypoelliptic operators with constant coefficients
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 265
EP  - 276
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a15/
LA  - en
ID  - SM_1993_75_1_a15
ER  - 
%0 Journal Article
%A G. G. Kazaryan
%T Strictly hypoelliptic operators with constant coefficients
%J Sbornik. Mathematics
%D 1993
%P 265-276
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a15/
%G en
%F SM_1993_75_1_a15
G. G. Kazaryan. Strictly hypoelliptic operators with constant coefficients. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 265-276. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a15/

[1] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 2, Mir, M., 1986

[2] Zielezny Z., “On the functional dimension of the space of solutions of PDE”, J. Differ. Equat., 18 (1975), 340–345 | DOI | MR | Zbl

[3] Pontrjagin L., Schnirelman L., “Sur une propiété metrique de la dimension”, Ann. Math., 33 (1921), 156–162 | DOI | MR

[4] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR

[5] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, vyp. 4, Fizmatgiz, M., 1961 | MR

[6] Langenbruch M., “On the Functional Dimension of solution Spaces of Hypoelliptic PDO”, Math. Ann., 272 (1985), 217–229 | DOI | MR | Zbl

[7] Langenbruch M., “P-Functionale und Randwerte zu hypoelliptischen Differentialoperatoren”, Math. Ann., 239 (1979), 55–74 | DOI | MR | Zbl

[8] Langenbruch M., “Differentiability and growth of solutions of PDE”, Manuscr. Math., 39 (1982), 297–312 | DOI | MR | Zbl

[9] Margaryan V. N., Kazaryan G. G., “O funktsionalnoi razmernosti prostranstva reshenii gipoellipticheskikh uravnenii”, Matem. sb., 115(157) (1981), 614–631 | MR | Zbl

[10] Mikhailov V. I., “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Tr. MIAN, 91 (1967), 59–80 | MR | Zbl

[11] Kazaryan G. G., “O nulyakh mnogochlenov mnogikh peremennykh”, Differents. uravneniya, 9:4 (1974), 712–720

[12] Nikolskii S. M., “Pervaya kraevaya zadacha dlya odnogo obschego lineinogo uravneniya”, DAN SSSR, 144:4 (1962), 767–769

[13] Volevich L. R., Gindikin S. G., “Ob odnom klasse gipoellipticheskikh polinomov”, Matem. sb., 75(117) (1968), 400–416 | Zbl

[14] Burenkov V. I., “O svyazi mezhdu povedeniem resheniya uravneniya v chastnykh proizvodnykh na beskonechnosti i ego differentsialnymi svoistvami”, Tr. MIAN, 89 (1967), 56–68 | MR

[15] Burenkov V. I., “O vliyanii ubyvaniya na beskonechnosti reshenii differentsialnykh uravnenii v chastnykh proizvodnykh na ikh differentsialnye svoistva”, Teoremy vlozheniya i ikh prilozheniya, Nauka, M., 1970, 30–45

[16] Kazaryan G. G., Markaryan V. N., “Otsenki reshenii negipoellipticheskikh uravnenii s dannym nositelem gipoelliptichnosti”, Izv. AN ArmSSR. Matematika, 22:4 (1987), 315–336 | MR | Zbl

[17] Kazaryan G. G., “Otsenki differentsialnykh operatorov i gipoellipticheskie operatory”, Tr. MIAN, 140 (1976), 130–161 | Zbl