The normal image of a~complete relatively minimal surface
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 257-264

Voir la notice de l'article provenant de la source Math-Net.Ru

For surfaces that are relatively minimal in the sense of relative differential geometry, a representation is found that generalizes the representation of Weierstrass for minimal surfaces. It is proved that the normal image of a complete regular relatively minimal surface other than a plane is an everywhere dense subset of a relative sphere. This assertion is a natural generalization of Osserman's theorem.
@article{SM_1993_75_1_a14,
     author = {V. N. Kokarev},
     title = {The normal image of a~complete relatively minimal surface},
     journal = {Sbornik. Mathematics},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - The normal image of a~complete relatively minimal surface
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 257
EP  - 264
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/
LA  - en
ID  - SM_1993_75_1_a14
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T The normal image of a~complete relatively minimal surface
%J Sbornik. Mathematics
%D 1993
%P 257-264
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/
%G en
%F SM_1993_75_1_a14
V. N. Kokarev. The normal image of a~complete relatively minimal surface. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 257-264. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/