The normal image of a complete relatively minimal surface
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 257-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For surfaces that are relatively minimal in the sense of relative differential geometry, a representation is found that generalizes the representation of Weierstrass for minimal surfaces. It is proved that the normal image of a complete regular relatively minimal surface other than a plane is an everywhere dense subset of a relative sphere. This assertion is a natural generalization of Osserman's theorem.
@article{SM_1993_75_1_a14,
     author = {V. N. Kokarev},
     title = {The normal image of a~complete relatively minimal surface},
     journal = {Sbornik. Mathematics},
     pages = {257--264},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - The normal image of a complete relatively minimal surface
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 257
EP  - 264
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/
LA  - en
ID  - SM_1993_75_1_a14
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T The normal image of a complete relatively minimal surface
%J Sbornik. Mathematics
%D 1993
%P 257-264
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/
%G en
%F SM_1993_75_1_a14
V. N. Kokarev. The normal image of a complete relatively minimal surface. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 257-264. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a14/

[1] Süss W., “Zur relativen Differentialgeometrie. III: Über Relativ-Minimalflächen und Verbiegung”, Japan. J. Math., 4:3 (1927), 203–207 | Zbl

[2] Kokarev V. N., Uslovno minimalnye poverkhnosti, Dep. v VINITI 29.04.84, No2806-84, M., 1984

[3] Müller E., “Relative Minimalfläche”, Monatsh. für Math., 31 (1921), 3–19 | DOI | MR | Zbl

[4] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[5] Sabitov I. Kh., “Gladkost giperpoverkhnosti polozhitelnoi vneshnei krivizny i ee osnovnykh form v sopryazhenno-garmonicheskikh koordinatakh”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1982, no. 6, 5–8 | MR | Zbl

[6] Aleksandrov A. D., “Teoremy edinstvennosti dlya poverkhnostei “v tselom”, II”, Vestn. LGU. Matematika. Mekhanika, Astronomiya, 1957, no. 7, 15–44

[7] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1964 | MR

[8] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960

[9] Aminov Yu. A., Minimalnye poverkhnosti, Izd-vo KhGU, Kharkov, 1978