On the existence of a countable set of solutions in a problem of polaron theory
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 247-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An investigation is made of a certain nonlinear second-order integro-differential equation having numerous applications in various areas of physics (polaron theory, the theory of many-particle quantum systems, and so on). Under certain assumptions it is proved that there is a positive solution, and, moreover, an infinite set of distinct solutions. Use is made of the Lyusternik–Shnirel'man theory of critical points and the fibering method of S. I. Pokhozhaev.
@article{SM_1993_75_1_a13,
     author = {P. E. Zhidkov},
     title = {On the existence of a~countable set of solutions in a problem of polaron theory},
     journal = {Sbornik. Mathematics},
     pages = {247--255},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a13/}
}
TY  - JOUR
AU  - P. E. Zhidkov
TI  - On the existence of a countable set of solutions in a problem of polaron theory
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 247
EP  - 255
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a13/
LA  - en
ID  - SM_1993_75_1_a13
ER  - 
%0 Journal Article
%A P. E. Zhidkov
%T On the existence of a countable set of solutions in a problem of polaron theory
%J Sbornik. Mathematics
%D 1993
%P 247-255
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a13/
%G en
%F SM_1993_75_1_a13
P. E. Zhidkov. On the existence of a countable set of solutions in a problem of polaron theory. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 247-255. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a13/

[1] Gorshkov S. N., Lakhno V. D., Rodriges K., Fedyanin V. K., “Ob obobschennom funktsionalnom podkhode k probleme polyarona”, DAN SSSR, 278:6 (1984), 1343–1347 | MR

[2] Lakhno V. D., Obobschennyi funktsionalnyi podkhod v teorii $F$-tsentrov, Preprint ONTI NTsBI, Puschino, 1985

[3] Lakhno V. D., Chuev G. N., Svyazannye sostoyaniya fononov v adiabaticheskoi teorii polyarona i $F$-tsentra, Preprint ONTI NTsBI, Puschino, 1987

[4] Amirkhanov I. V. i dr., Chislennoe issledovanie odnoi spektralnoi zadachi v opticheskoi modeli polyarona, Preprint OIYaI, P5 - 85 - 445, Dubna, 1985 | Zbl

[5] Bogolyubov N. N., Lektsii po kvantovoi statistike. Sobr. tr., t. 2, Naukova dumka, Kiev, 1970

[6] Blokhintsev D. I., Osnovy kvantovoi mekhaniki, Nauka, M., 1976

[7] Lions P. L., “Choquard equation and related questions”, Nonlinear Anal.: Theory Meth. and Appl., 4:6 (1980), 1063–1072 | DOI | MR | Zbl

[8] Lieb E. H., “Existence and uniqueness of minimizing solution of the Choquard's nonlinear equation”, Stud. in Appl. Math., 57:2 (1977), 93–105 | MR | Zbl

[9] Pokhozhaev S. I., “O metode rassloeniya reshenii nelineinykh kraevykh zadach”, Tr. MIAN, 192 (1990), 146–163 | MR

[10] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[11] Clark D. C., “A variant of the Lusternik - Schnirelman theory”, Indiana Univ. Math. J., 22:1 (1972), 65–74 | DOI | MR | Zbl

[12] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, ch. 1, IL, M., 1960