Categories of bistochastic measures, and representations of some infinite-dimensional groups
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 197-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following groups are considered: the automorphism group of a Lebesgue measure space (with finite or $\sigma$-finite measure), groups of measurable functions with values in a Lie group, and diffeomorphism groups of manifolds. It turns out that the theory of representations of all these groups is closely related to the theory of representations of some category, which will be called the category of $G$-polymorphisms. Objects of this category are measure spaces, and a morphism from $M$ to $N$ is a probability measure on $M\times N\times G$, where $G$ is a fixed Lie group. For some of the above-mentioned infinite-dimensional groups $\mathfrak{G}$ it is shown that any representation of $\mathfrak{G}$ extends canonically to a representation of some category of $G$-polymorphisms. For automorphism groups of measure spaces this makes it possible to obtain a classification of all unitary representations. Also “new” examples of representations of groups of area-preserving diffeomorphisms of two-dimensional manifolds are constructed.
@article{SM_1993_75_1_a11,
     author = {Yu. A. Neretin},
     title = {Categories of bistochastic measures, and representations of some infinite-dimensional groups},
     journal = {Sbornik. Mathematics},
     pages = {197--219},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a11/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Categories of bistochastic measures, and representations of some infinite-dimensional groups
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 197
EP  - 219
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a11/
LA  - en
ID  - SM_1993_75_1_a11
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Categories of bistochastic measures, and representations of some infinite-dimensional groups
%J Sbornik. Mathematics
%D 1993
%P 197-219
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a11/
%G en
%F SM_1993_75_1_a11
Yu. A. Neretin. Categories of bistochastic measures, and representations of some infinite-dimensional groups. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 197-219. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a11/

[1] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | Zbl

[2] Vershik A. M., “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie protsessy”, Zap. nauch. seminarov LOMI, 72, 1977, 26–61 | MR | Zbl

[3] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya gruppy $SL(2,\mathbf R)$, gde $\mathbf R$ – koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR | Zbl

[4] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya grupp diffeomorfizmov”, UMN, 30:6 (1975), 3–50 | MR | Zbl

[5] Vershik A. M., Karpushev S. I., “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Matem. sb., 119 (161) (1982), 521–533 | MR | Zbl

[6] Ismagilov R. S., “Sfericheskie funktsii nad normirovannym polem, pole vychetov kotorogo beskonechno”, Funktsion. analiz i ego pril., 4:1 (1970), 42–51 | MR | Zbl

[7] Ismagilov R. S., “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov okruzhnosti”, Funktsion. analiz i ego pril., 5:3 (1971), 45–53 | MR | Zbl

[8] Kirillov A. A., “Predstavleniya beskonechnomernoi unitarnoi gruppy”, DAN SSSR, 212:2 (1973), 288–290 | MR | Zbl

[9] Kirillov A. A., Unitarnye predstavleniya gruppy diffeomorfizmov i nekotorykh ee podgrupp, Preprint IPM, No62, 1974 | MR

[10] Neretin Yu. A., “O kompleksnoi polugruppe, soderzhaschei gruppu diffeomorfizmov okruzhnosti”, Funktsion. analiz i ego pril., 21:2 (1987), 82–83 | MR | Zbl

[11] Neretin Yu. A., “Predstavleniya algebry Virasoro i affinnykh algebr”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 22, VINITI, M., 1988, 163–224 | MR

[12] Neretin Yu. A., “Golomorfnye prodolzheniya predstavlenii gruppy diffeomorfizmov okruzhnosti”, Matem. sb., 180:5 (1989), 636–657

[13] Neretin Yu. A., “Spinornoe predstavlenie beskonechnomernoi ortogonalnoi polugruppy i algebra Virasoro”, Funktsion. analiz i ego pril., 23:3 (1989), 32–44 | MR

[14] Neretin Yu. A., “Ob odnoi polugruppe operatorov v bozonnom prostranstve Foka”, Funktsion. analiz i ego pril., 24:2 (1990), 63–73 | MR | Zbl

[15] Neretin Yu. A., “Ob operatorakh, svyazyvayuschikh golomorfnye predstavleniya raznykh grupp”, DAN SSSR, 312:6 (1990), 1318–1321

[16] Neretin Yu. A., “Prodolzhenie predstavlenii klassicheskikh grupp do predstavlenii kategorii”, Algebra i analiz, 3:1 (1991), 176–202 | MR

[17] Olshanskii G. I., “Unitarnye predstavleniya beskonechnomernykh klassicheskikh grupp $U(p,\infty)$, $O(p,\infty)$, $\operatorname{Sp}(p,\infty)$ i sootvetstvuyuschikh grupp dvizhenii”, Funktsion. analiz i ego pril., 12:3 (1978), 32–44 | MR

[18] Olshanskii G. I., “Unitarnye predstavleniya beskonechnomernykh $(G, K)$-par i formalizm Khau”, DAN SSSR, 269:1 (1983), 33–36 | MR

[19] Olshanskii G. I., “Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi”, Algebra i analiz, 1:4 (1989), 178–209 | MR | Zbl

[20] Bargmann V., “On a Hilbert space of analytic functions and associated integral transform”, Commun. Pure and Appl. Math., 14:3 (1961), 187–214 | DOI | MR | Zbl

[21] Guichardet A., Symmetric Hilbert space and related topics, Lect. Notes in Math., 261, 1972 | MR | Zbl

[22] Lieberman A., “The structure of certain unitary representations of infinite symmetric group”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR

[23] Nazarov M., Neretin Yu., Olshanskii Gr., “Semigroupes engendres par la representation de Weil du group symplectique de dimension infinie”, Compt. Rend. Acad. Sci. Paris., 309:7 (1989), 443–446 | MR | Zbl

[24] Neretin Yu. A., “Infinite dimensional groupes. Their mantles, trains and representations”, Adv. in Soviet Math., 2 (1991), 103–171 | MR | Zbl

[25] Olshanskii Gr. I., “Unitary representations of the infinite symmetric groupe: semigroupe approach”, Representations of Lie groupes and Lie algebras, Academiai Kiado, Budapest, 1985, 181–197 | MR

[26] Parthasarathy K., Schmidt K., Positive definite kernels, continuos tesor products and central limit theorems of probability theory, Lect. Notes in Math., 272, 1972 | MR | Zbl

[27] Thoma E., “Die unzerlegbaren, positive definiten Klassen function der abzdhbar unendlichen symmetrishen Groupe”, Math. Zeitschr., 85 (1964), 40–61 | DOI | MR | Zbl

[28] Ismagilov R. S., “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov prostranstva $\mathbb{R}^n$, $n\geqslant2$”, Funktsion. analiz i ego pril., 9:2 (1975), 71–72 | MR | Zbl