Natural mappings of relative Wall groups
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 183-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author studies the natural mappings of the relative Wall groups for the imbedding $\mathbf{Z}\pi\to\widehat{\mathbf{Z}}_2\pi$ that occur in a two-row diagram, in the case of finite abelian 2-groups. It is shown that in this case the diagram splits into a direct sum of a certain number of four different diagrams. The results are applied to the study of mappings of surgery obstruction groups.
@article{SM_1993_75_1_a10,
     author = {Yu. V. Muranov},
     title = {Natural mappings of relative {Wall} groups},
     journal = {Sbornik. Mathematics},
     pages = {183--195},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a10/}
}
TY  - JOUR
AU  - Yu. V. Muranov
TI  - Natural mappings of relative Wall groups
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 183
EP  - 195
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a10/
LA  - en
ID  - SM_1993_75_1_a10
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%T Natural mappings of relative Wall groups
%J Sbornik. Mathematics
%D 1993
%P 183-195
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a10/
%G en
%F SM_1993_75_1_a10
Yu. V. Muranov. Natural mappings of relative Wall groups. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 183-195. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a10/

[1] Wall C. T. C., “Classification of Hermitian forms. VI: Group rings”, Ann. Math., 103 (1976), 1–80 | DOI | MR | Zbl

[2] Wall C. T. C., Surgery on Compact Manifolds, Acad. Press, L., 1970 | MR

[3] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lect. Notes in Math., 943, 1982, 102–131 | MR

[4] Hambleton I., Taylor L., Williams B., “An introduction to the maps between surgery obstruction groups”, Lect. Notes in Math., 1051 (1984), 49–127 | DOI | MR | Zbl

[5] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera - Livsi abelevykh 2-kh grupp”, Matem. sb., 181:8 (1990), 1061–1098 | MR | Zbl

[6] Muranov Yu. V., “Prepyatstviya k perestroikam dvulistnykh nakrytii”, Matem. sb., 131(173) (1986), 347–356 | MR | Zbl

[7] Kharshiladze A. F., “Ermitova $K$-teoriya i kvadratichnye rasshireniya kolets”, Tr. MMO, 41 (1980), 1–36 | MR | Zbl

[8] Ranicki A., $L$-theory of twisted quadratic extensions, Appendix 4, Preprint, Princeton, 1981 | MR | Zbl

[9] Hambleton I., Kharshiladze A., A spectral sequence in surgery theory, Preprint | MR | Zbl

[10] Kharshiladze A. F., “Iterirovannye invarianty Braudera–Livsi i uzing problema”, Matem. zametki, 41:4 (1987), 557–563 | MR | Zbl

[11] Fam Ngok An Kyong, Gruppy Braudera - Livsi, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1989, 63 pp.