Natural mappings of relative Wall groups
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 183-195
Voir la notice de l'article provenant de la source Math-Net.Ru
The author studies the natural mappings of the relative Wall groups for the imbedding $\mathbf{Z}\pi\to\widehat{\mathbf{Z}}_2\pi$ that occur in a two-row diagram, in the case of finite abelian 2-groups. It is shown that in this case the diagram splits into a direct sum of a certain number of four different diagrams. The results are applied to the study of mappings of surgery obstruction groups.
@article{SM_1993_75_1_a10,
author = {Yu. V. Muranov},
title = {Natural mappings of relative {Wall} groups},
journal = {Sbornik. Mathematics},
pages = {183--195},
publisher = {mathdoc},
volume = {75},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a10/}
}
Yu. V. Muranov. Natural mappings of relative Wall groups. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 183-195. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a10/