Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. II. The module method
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 1-15

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of spectral synthesis for a subspace $W$ invariant with respect to a differential operator with constant coefficients was reduced earlier to verification that its annihilator submodule $I=\operatorname{An}W$ is ample. In the present article the property of ampleness is split into two parts – stability, and the property of being saturated. The latter properties are subjected to a systematic investigation.
@article{SM_1993_75_1_a0,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. {II.} {The} module method},
     journal = {Sbornik. Mathematics},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. II. The module method
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 1
EP  - 15
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/
LA  - en
ID  - SM_1993_75_1_a0
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. II. The module method
%J Sbornik. Mathematics
%D 1993
%P 1-15
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/
%G en
%F SM_1993_75_1_a0
I. F. Krasichkov-Ternovskii. Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. II. The module method. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/