Spectral synthesis in a complex domain for a differential operator with constant coefficients. II. The module method
Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 1-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of spectral synthesis for a subspace $W$ invariant with respect to a differential operator with constant coefficients was reduced earlier to verification that its annihilator submodule $I=\operatorname{An}W$ is ample. In the present article the property of ampleness is split into two parts – stability, and the property of being saturated. The latter properties are subjected to a systematic investigation.
@article{SM_1993_75_1_a0,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. {II.} {The} module method},
     journal = {Sbornik. Mathematics},
     pages = {1--15},
     year = {1993},
     volume = {75},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Spectral synthesis in a complex domain for a differential operator with constant coefficients. II. The module method
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 1
EP  - 15
VL  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/
LA  - en
ID  - SM_1993_75_1_a0
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Spectral synthesis in a complex domain for a differential operator with constant coefficients. II. The module method
%J Sbornik. Mathematics
%D 1993
%P 1-15
%V 75
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/
%G en
%F SM_1993_75_1_a0
I. F. Krasichkov-Ternovskii. Spectral synthesis in a complex domain for a differential operator with constant coefficients. II. The module method. Sbornik. Mathematics, Tome 75 (1993) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/SM_1993_75_1_a0/

[1] Krasichkov-Ternovskii I. F., “Spektralnyi sintez v kompleksnoi oblasti dlya differentsialnogo operatora s postoyannymi koeffitsientami. I: Teorema dvoistvennosti”, Matem. sb., 181 (1990), 1640–1658 | MR

[2] Krasichkov-Ternovskii I. F., Shishkin A. B., “Spektralnyi sintez dlya operatora kratnogo differentsirovaniya”, DAN SSSR, 307:1 (1989), 24–27 | MR

[3] Shishkin A. B., “Lokalnoe opisanie zamknutykh podmodulei v spetsialnom module tselykh funktsii eksponentsialnogo tipa”, Matem. zametki, 46:6 (1989), 94–100 | MR | Zbl

[4] Krasichkov-Ternovskii I. F., “Spektralnyi sintez analiticheskikh funktsii na sistemakh vypuklykh oblastei”, Matem. sb., 111 (153) (1980), 3–41 | MR

[5] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi, I”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 44–66 | MR

[6] Krasichkov-Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi, II”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 309–341 | MR

[7] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR

[8] Nevanlinna R., Uniformizatsiya, IL, M., 1955

[9] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR | Zbl