Asymptotics as $|x|\to\infty$ of functions lying on an attractor of the two-dimensional Navier–Stokes system in an unbounded plane domian
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 427-453 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Navier–Stokes system is considered in a plane domain that has several exits to infinity having the form of channels of bounded width. It is assumed that the external force decays sufficiently fast at infinity. Solutions are considered that are defined and bounded for all $t\in\mathbf R$. Such solutions lie on an attractor of the system. An asymptotic expansion as $|x|\to\infty$ is obtained for these solutions. The presence of this expansion indicates, in particular, that turbulence in this situation does not propagate to infinity.
@article{SM_1993_74_2_a8,
     author = {A. V. Babin},
     title = {Asymptotics as $|x|\to\infty$ of functions lying on an attractor of the two-dimensional {Navier{\textendash}Stokes} system in an unbounded plane domian},
     journal = {Sbornik. Mathematics},
     pages = {427--453},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a8/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - Asymptotics as $|x|\to\infty$ of functions lying on an attractor of the two-dimensional Navier–Stokes system in an unbounded plane domian
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 427
EP  - 453
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a8/
LA  - en
ID  - SM_1993_74_2_a8
ER  - 
%0 Journal Article
%A A. V. Babin
%T Asymptotics as $|x|\to\infty$ of functions lying on an attractor of the two-dimensional Navier–Stokes system in an unbounded plane domian
%J Sbornik. Mathematics
%D 1993
%P 427-453
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a8/
%G en
%F SM_1993_74_2_a8
A. V. Babin. Asymptotics as $|x|\to\infty$ of functions lying on an attractor of the two-dimensional Navier–Stokes system in an unbounded plane domian. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 427-453. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a8/

[1] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave-Stoksa”, Zap. nauch. seminarov LOMI, 27 (1972), 91–115 | Zbl

[2] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave-Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[3] Hale J. K., Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Amer. Math. Soc., Providence, 1988 | MR | Zbl

[4] Temam R., Infinite-Dimensional Systems in Mechanics and Physics, Springer-Verlag, 1988 | MR | Zbl

[5] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[7] Heywood J. G., “On uniqueness questions in the theory of viscous flow”, Acta Math., 136 (1976), 61–102 | DOI | MR | Zbl

[8] Solonnikov V. A., “Stokes and Navier - Stokes equations in domains with noncompact boundaries”, Res. Notes in Math., 84, 1983, 240–349 | MR | Zbl

[9] Ladyzhenskaya O. A., Solonnikov V. A., “O razreshimosti kraevykh i nachalno-kraevykh zadach dlya uravnenii Nave-Stoksa v oblastyakh s nekompaktnymi granitsami”, Vestn. LGU. Ser. matem., 1977, no. 13, 39–47 | Zbl

[10] Solonnikov V. A., Piletskas K. I., “O nekotorykh prostranstvakh selenoidalnykh vektorov i o razreshimosti kraevoi zadachi dlya sistemy uravnenii Nave-Stoksa v oblastyakh s nekompaktnymi granitsami”, Zap. nauch. seminarov LOMI, 73 (1977), 136–151 | MR | Zbl

[11] Piletskas K. I., Solonnikov V. A., “O statsionarnykh sistemakh Stoksa i Nave-Stoksa v beskonechnom otkrytom kanale”, Litovsk. matem. sb., 29:1 (1989), 90–108 ; 2, 347–367 | MR | Zbl | MR | Zbl

[12] Chichayan O. F., “O povedenii obobschennykh reshenii zadachi Dirikhle dlya sistemy Nave-Stoksa i sistemy Karmana v okrestnosti beskonechno udalennoi tochki”, UMN, 41:2 (1986), 211–212 | MR

[13] Babin A. V., “Attractor of the Navier - Stokes system in an unbounded channel-like domain”, J. Dynamics and Diff. Equat., 2:3 (1990)

[14] Abergel F., “Attractor for a Navier-Stokes flow in an unbounded domain”, Math. Mod. and Num. Anal., 23:3 (1989), 359–370 | MR | Zbl

[15] Maslov V. P., Mosolov P. P., Uravneniya odnomernogo barotropnogo gaza, Nauka, M., 1990 | MR

[16] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 4. Gidrodinamika, Nauka, M., 1988

[17] Ruelle D., Takens F., “On the nature of turbulence”, Comm. Math. Phys., 20 (1971), 167–192 | DOI | MR | Zbl

[18] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[19] Strannye attraktory, Sb. statei, Mir, M., 1981 | MR

[20] Babin A. V., Vishik M. I., “Attractors of partial differential evolution equations in an unbounded domain”, Proc. Roy. Soc. Edinburgh. A, 115 (1990), 1–23 | MR

[21] Temam R., Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[22] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[23] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[24] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[25] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[26] Caffarelli L., Kohn R., Nirenberg L., “Partial Regularity of Suitable Weak Solutions of the Navier-Stokes Equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[27] Babin A. V., “Asimptoticheskoe povedenie pri $|x|\to\infty$ silno vozmuschennykh techenii Puazeilya”, DAN SSSR, 316:4 (1990)