On the functions with near values of the least deviation from polynomials and rational functions
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 405-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author establishes that, for every function $f(z)$ that is analytic inside the unit disk $D$ and belongs to the space $L^p(D)$ with $p>1$, the equation $$ \rho\stackrel{\operatorname{def}}{=}\varlimsup_{n\to\infty}\sqrt[\leftroot{2}\uproot{4}n]{L^pE_n(f,D)-L^pR_n(f,D)}=\varlimsup_{n\to\infty}\sqrt[\leftroot{2}\uproot{4}n]{L^pE_n(f,D)} $$ is satisfied, where $L^pE_n(f,D)$ and $L^pR_n(f,D)$ are the minimal deviations of $f$ from polynomials of degree at most $n$ and from rational functions of order at most $n$. In particular, $\rho<1$ if and only if $f$ can be continued analytically over the disk $|z|<1/\rho$. There is also a similar proposition for the approximation of functions in the spaces $H^p$, $p>1$.
@article{SM_1993_74_2_a6,
     author = {Kh. M. Makhmudov},
     title = {On~the functions with near values of the least deviation from polynomials and rational functions},
     journal = {Sbornik. Mathematics},
     pages = {405--417},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a6/}
}
TY  - JOUR
AU  - Kh. M. Makhmudov
TI  - On the functions with near values of the least deviation from polynomials and rational functions
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 405
EP  - 417
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a6/
LA  - en
ID  - SM_1993_74_2_a6
ER  - 
%0 Journal Article
%A Kh. M. Makhmudov
%T On the functions with near values of the least deviation from polynomials and rational functions
%J Sbornik. Mathematics
%D 1993
%P 405-417
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a6/
%G en
%F SM_1993_74_2_a6
Kh. M. Makhmudov. On the functions with near values of the least deviation from polynomials and rational functions. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 405-417. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a6/

[1] Gonchar A. A., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, DAN SSSR, 100:2 (1955), 205–208 | Zbl

[2] Boehm B., “Functions whose best vational Chebyshev approximations are polynomials”, Nut. Math., 6 (1964), 235–242 | DOI | MR | Zbl

[3] Dolzhenko E. P., “Sravnenie skorostei ratsionalnoi i polinomialnoi approksimatsii”, Matem. zametki, 1:3 (1967), 313–320 | Zbl

[4] Levin A. L., Tikhomirov V. M., “O priblizhenii analiticheskikh funktsii ratsionalnymi”, DAN SSSR, 174:2 (1967), 279–282 | MR | Zbl

[5] Levin A. L., “Raspolozhenie polyusov ratsionalnykh funktsii nailuchshego priblizheniya i smezhnye voprosy”, Matem. sb., 80(122) (1969), 281–289 | MR

[6] Ioffe A. D., Tikhomirov V. M., “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, UMN, 27:5 (1968), 51–116 | MR