On~the functions with near values of the least deviation from polynomials and rational functions
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 405-417
Voir la notice de l'article provenant de la source Math-Net.Ru
The author establishes that, for every function $f(z)$ that is analytic inside the unit disk $D$ and belongs to the space $L^p(D)$ with $p>1$, the equation
$$
\rho\stackrel{\operatorname{def}}{=}\varlimsup_{n\to\infty}\sqrt[\leftroot{2}\uproot{4}n]{L^pE_n(f,D)-L^pR_n(f,D)}=\varlimsup_{n\to\infty}\sqrt[\leftroot{2}\uproot{4}n]{L^pE_n(f,D)}
$$
is satisfied, where $L^pE_n(f,D)$ and $L^pR_n(f,D)$ are the minimal deviations of $f$ from polynomials of degree at most $n$ and from rational functions of order at most $n$. In particular, $\rho1$ if and only if $f$ can be continued analytically over the disk $|z|1/\rho$.
There is also a similar proposition for the approximation of functions in the spaces $H^p$,
$p>1$.
@article{SM_1993_74_2_a6,
author = {Kh. M. Makhmudov},
title = {On~the functions with near values of the least deviation from polynomials and rational functions},
journal = {Sbornik. Mathematics},
pages = {405--417},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a6/}
}
TY - JOUR AU - Kh. M. Makhmudov TI - On~the functions with near values of the least deviation from polynomials and rational functions JO - Sbornik. Mathematics PY - 1993 SP - 405 EP - 417 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a6/ LA - en ID - SM_1993_74_2_a6 ER -
Kh. M. Makhmudov. On~the functions with near values of the least deviation from polynomials and rational functions. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 405-417. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a6/