Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 381-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of mean dimension is introduced for a broad class of subspaces of $L_p(\mathbf R)$, and analogues of the Kolmogorov widths, Bernstein widths, Gel'fand widths, and linear widths are defined. The precise values of these quantities are computed for Sobolev classes of functions on $\mathbf R$ in compatible metrics, and the corresponding extremal spaces and operators are described. A closely related problem of optimal recovery of functions in Sobolev classes is also studied.
@article{SM_1993_74_2_a5,
     author = {G. G. Magaril-Il'yaev},
     title = {Mean dimension, widths, and optimal recovery of {Sobolev} classes of functions on the line},
     journal = {Sbornik. Mathematics},
     pages = {381--403},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a5/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
TI  - Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 381
EP  - 403
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a5/
LA  - en
ID  - SM_1993_74_2_a5
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%T Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line
%J Sbornik. Mathematics
%D 1993
%P 381-403
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a5/
%G en
%F SM_1993_74_2_a5
G. G. Magaril-Il'yaev. Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 381-403. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a5/

[1] Tikhomirov V. M., “Ob approksimativnykh kharakteristikakh gladkikh funktsii”, Tr. konf. po differentsialnym uravneniyam i vychislitelnoi matematike, Nauka, Novosibirsk, 1980, 183–188 | MR

[2] Din Zung, Magaril-Ilyaev G. G., “Zadachi tipa Bernshteina i Favara i srednyaya $\varepsilon$-razmernost nekotorykh klassov funktsii”, DAN SSSR, 249:4 (1979), 783–786 | MR | Zbl

[3] Din Zung, “Srednyaya $\varepsilon$-razmernost klassa funktsii $B_{G,p}$”, Matem. zametki, 28:5 (1980), 727–736 | MR | Zbl

[4] Le Chyong Tung, “Srednyaya $\varepsilon$-razmernost klassa funktsii, imeyuschikh nositel preobrazovaniya Fure, soderzhaschiisya v zadannom mnozhestve”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1980, no. 5, 44–49

[5] Magaril-Ilyaev G. G., “$\varphi$-srednie poperechniki klassov funktsii na pryamoi”, UMN, 45:2 (1990), 211–212 | MR

[6] Magaril-Ilyaev G. G., “Srednyaya razmernost i poperechniki klassov funktsii na pryamoi”, DAN SSSR, 318:1 (1991), 35–38 | MR

[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[8] Tikhomirov V. M., “Ob $\varepsilon$-entropii nekotorykh klassov analiticheskikh funktsii”, DAN SSSR, 117:2 (1957), 191–194 | Zbl

[9] Gulisashvili A. B., “Srednyaya $\varepsilon$-razmernost klassov funktsii, spektry kotorykh soderzhatsya v zadannom mnozhestve”, DAN SSSR, 317:4 (1991), 803–807 | MR | Zbl

[10] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[11] Magaril-Ilyaev G. G., “O nailuchshem priblizhenii splainami klassov funktsii na pryamoi”, Tr. MIAN SSSR, 194, 1992, 148–159 | MR | Zbl

[12] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[13] Buslaev A. P., Tikhomirov V. M., “Spektry nelineinykh differentsialnykh uravnenii i poperechniki sobolevskikh klassov”, Matem. sb., 181:12 (1990), 1587–1606 | MR

[14] Subbotin Yu. N., “Priblizhenie «splain»-funktsiyami i otsenki poperechnikov”, Tr. MIAN SSSR, 109 (1971), 35–60 | MR | Zbl

[15] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 252–263 | MR

[16] Stein E. M., “Functions of exponential type”, Ann. Math., 65 (1957), 582–592 | DOI | MR | Zbl

[17] Magaril-Ilyaev G. G., Tikhomirov V. M., O priblizhenii klassov funktsii na pryamoi splainami i tselymi funktsiyami, Differentsialnye uravneniya i funktsionalnyi analiz, Izd-vo Un-ta Druzhby narodov, M., 1991

[18] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $\mathbf{C}[-1, 1]$”, Matem. sb., 80(122) (1969), 290–304 | Zbl

[19] Melkman A. A., Micchelli C. A., “Spline spaces are optimal for $L^2$ $n$-widths”, Illinois J. Math., 22 (1978), 541–564 | MR | Zbl

[20] de Boor C., Schoenberg I. J., Cardinal Interpolation and spline functions VIII, Lect. Notes Math., 501, 1976 | Zbl

[21] Li Chun, $L_1(\mathbf{R})$-optimal recovery on some differentiate function classes, Preprint

[22] Sun Yongsheng, Li Chun, Optimal recovery for $W_2(\mathbf{R})$ in $L^2(\mathbf{R})$, Preprint

[23] Sun Yongsheng, “On optimal interpolation for differentiable function class $(1)$”, Aprox. Theory and its Appl., 2 (1986), 49–54 | MR | Zbl

[24] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[25] Sun Yun-shen, Li Chun, “Nailuchshee priblizhenie nekotorykh klassov gladkikh funktsii na deistvitelnoi osi splainami vysshego poryadka”, Matem. zametki, 48:4 (1990), 100–109 | Zbl

[26] Höllig K., “Diameters of classes of functions”, Quantitative approximation, Springer, N. Y., 1980, 163–176 | MR

[27] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI, M., 1987, 103–260

[28] Krein M. G., “O nailuchshei approksimatsii nepreryvnykh differentsiruemykh funktsii na vsei veschestvennoi osi”, DAN SSSR, 80:9 (1938), 619–623

[29] Sun Yongsheng, Optimal interpolation on some classes of smooth functions over the whole real axis, Preprint