Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 381-403
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of mean dimension is introduced for a broad class of subspaces
of $L_p(\mathbf R)$, and analogues of the Kolmogorov widths, Bernstein widths, Gel'fand widths, and linear widths are defined. The precise values of these quantities are computed for Sobolev classes of functions on $\mathbf R$ in compatible metrics, and the corresponding extremal spaces and operators are described. A closely related problem of optimal recovery of functions in Sobolev classes is also studied.
@article{SM_1993_74_2_a5,
author = {G. G. Magaril-Il'yaev},
title = {Mean dimension, widths, and optimal recovery of {Sobolev} classes of functions on the line},
journal = {Sbornik. Mathematics},
pages = {381--403},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a5/}
}
TY - JOUR AU - G. G. Magaril-Il'yaev TI - Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line JO - Sbornik. Mathematics PY - 1993 SP - 381 EP - 403 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a5/ LA - en ID - SM_1993_74_2_a5 ER -
G. G. Magaril-Il'yaev. Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 381-403. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a5/