On finite-dimension Chebyshev subspaces of spaces with an integral metric
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 361-380

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a detailed study of the problem of the existence and characterization of finite-dimensional Chebyshev subspaces of the spaces $\varphi(L)$ and $L^{p(t)}$ on the interval $I=[-1,1]$, where $\varphi(t)$ is an even nonnegative continuous nondecreasing function on the half-line $[0,+\infty)$, and the function $p(t)$ is measurable, finite, and positive almost everywhere on $I$. If $\varphi$ is an $N$-function, it is characterized as a Chebyshev subspace of the Orlicz spaces with the Luxemburg norm.
@article{SM_1993_74_2_a4,
     author = {N. K. Rakhmetov},
     title = {On finite-dimension {Chebyshev} subspaces of spaces with an integral metric},
     journal = {Sbornik. Mathematics},
     pages = {361--380},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a4/}
}
TY  - JOUR
AU  - N. K. Rakhmetov
TI  - On finite-dimension Chebyshev subspaces of spaces with an integral metric
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 361
EP  - 380
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a4/
LA  - en
ID  - SM_1993_74_2_a4
ER  - 
%0 Journal Article
%A N. K. Rakhmetov
%T On finite-dimension Chebyshev subspaces of spaces with an integral metric
%J Sbornik. Mathematics
%D 1993
%P 361-380
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a4/
%G en
%F SM_1993_74_2_a4
N. K. Rakhmetov. On finite-dimension Chebyshev subspaces of spaces with an integral metric. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 361-380. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a4/