On finite-dimension Chebyshev subspaces of spaces with an integral metric
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 361-380
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a detailed study of the problem of the existence and characterization of finite-dimensional Chebyshev subspaces of the spaces $\varphi(L)$ and $L^{p(t)}$ on the interval $I=[-1,1]$, where $\varphi(t)$ is an even nonnegative continuous nondecreasing function on the half-line $[0,+\infty)$, and the function $p(t)$ is measurable, finite, and positive almost everywhere on $I$. If $\varphi$ is an $N$-function, it is characterized as a Chebyshev subspace of the Orlicz spaces with the Luxemburg norm.
@article{SM_1993_74_2_a4,
author = {N. K. Rakhmetov},
title = {On finite-dimension {Chebyshev} subspaces of spaces with an integral metric},
journal = {Sbornik. Mathematics},
pages = {361--380},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a4/}
}
N. K. Rakhmetov. On finite-dimension Chebyshev subspaces of spaces with an integral metric. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 361-380. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a4/