Conditions for absolute convergence of the Taylor coefficient series of a~meromorphic function of two variables
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 337-360
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the Taylor series of a meromorphic function of two variables converges absolutely in the closed unit bidisk $\overline U^2$ if this function satisfies a Hölder condition in $\overline U^2$ with exponent $1/2$, while for any $\varepsilon>0$ there exists a rational function with Hölder exponent $1/2-\varepsilon$ such that the indicated series diverges. This result solves the problem of stability of two-dimensional recursive digital filters. In its proof the structure of the asymptotic behavior of the Taylor coefficients of a meromorphic function of two variables is investigated.
@article{SM_1993_74_2_a3,
author = {A. K. Tsikh},
title = {Conditions for absolute convergence of the {Taylor} coefficient series of a~meromorphic function of two variables},
journal = {Sbornik. Mathematics},
pages = {337--360},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/}
}
TY - JOUR AU - A. K. Tsikh TI - Conditions for absolute convergence of the Taylor coefficient series of a~meromorphic function of two variables JO - Sbornik. Mathematics PY - 1993 SP - 337 EP - 360 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/ LA - en ID - SM_1993_74_2_a3 ER -
A. K. Tsikh. Conditions for absolute convergence of the Taylor coefficient series of a~meromorphic function of two variables. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 337-360. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/