Conditions for absolute convergence of the Taylor coefficient series of a~meromorphic function of two variables
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 337-360

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Taylor series of a meromorphic function of two variables converges absolutely in the closed unit bidisk $\overline U^2$ if this function satisfies a Hölder condition in $\overline U^2$ with exponent $1/2$, while for any $\varepsilon>0$ there exists a rational function with Hölder exponent $1/2-\varepsilon$ such that the indicated series diverges. This result solves the problem of stability of two-dimensional recursive digital filters. In its proof the structure of the asymptotic behavior of the Taylor coefficients of a meromorphic function of two variables is investigated.
@article{SM_1993_74_2_a3,
     author = {A. K. Tsikh},
     title = {Conditions for absolute convergence of the {Taylor} coefficient series of a~meromorphic function of two variables},
     journal = {Sbornik. Mathematics},
     pages = {337--360},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/}
}
TY  - JOUR
AU  - A. K. Tsikh
TI  - Conditions for absolute convergence of the Taylor coefficient series of a~meromorphic function of two variables
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 337
EP  - 360
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/
LA  - en
ID  - SM_1993_74_2_a3
ER  - 
%0 Journal Article
%A A. K. Tsikh
%T Conditions for absolute convergence of the Taylor coefficient series of a~meromorphic function of two variables
%J Sbornik. Mathematics
%D 1993
%P 337-360
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/
%G en
%F SM_1993_74_2_a3
A. K. Tsikh. Conditions for absolute convergence of the Taylor coefficient series of a~meromorphic function of two variables. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 337-360. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/