Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 337-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the Taylor series of a meromorphic function of two variables converges absolutely in the closed unit bidisk $\overline U^2$ if this function satisfies a Hölder condition in $\overline U^2$ with exponent $1/2$, while for any $\varepsilon>0$ there exists a rational function with Hölder exponent $1/2-\varepsilon$ such that the indicated series diverges. This result solves the problem of stability of two-dimensional recursive digital filters. In its proof the structure of the asymptotic behavior of the Taylor coefficients of a meromorphic function of two variables is investigated.
@article{SM_1993_74_2_a3,
     author = {A. K. Tsikh},
     title = {Conditions for absolute convergence of the {Taylor} coefficient series of a~meromorphic function of two variables},
     journal = {Sbornik. Mathematics},
     pages = {337--360},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/}
}
TY  - JOUR
AU  - A. K. Tsikh
TI  - Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 337
EP  - 360
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/
LA  - en
ID  - SM_1993_74_2_a3
ER  - 
%0 Journal Article
%A A. K. Tsikh
%T Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables
%J Sbornik. Mathematics
%D 1993
%P 337-360
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/
%G en
%F SM_1993_74_2_a3
A. K. Tsikh. Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 337-360. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a3/

[1] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[2] Dautov Sh. A., “Ob absolyutnoi skhodimosti ryada iz koeffitsientov Teilora ratsionalnoi funktsii dvukh peremennykh. Ustoichivost dvumernykh tsifrovykh rekursivnykh filtrov”, DAN SSSR, 257:6 (1981), 1302–1305 | MR

[3] Nekotorye nereshennye zadachi mnogomernogo kompleksnogo analiza, ed. E. M. Chirka, In-t fiziki SO AN SSSR, Krasnoyarsk, 1987

[4] Dzhuri E., Innory i ustoichivost dinamicheskikh sistem, Nauka, M., 1979

[5] Dadzhion D., Mersero O., Tsifrovaya obrabotka mnogomernykh signalov, Mir, M., 1988

[6] Puankare A., Novye metody nebesnoi mekhaniki. Izbr. trudy: v 3-kh t., t. 1, Nauka, M., 1971

[7] Lere Zh., Differentsialnoe i integralnoe ischisleniya na kompleksnom analiticheskom mnogoobrazii, IL, M., 1961

[8] Fedoryuk M. V., Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR

[9] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Gostekhizdat, M., 1948

[10] Evgrafov M. A., O nekotorykh aspektakh metoda perevala, Preprint In-ta prikl. matem. AN SSSR, M., 1975

[11] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR