Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 309-335

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of spectral synthesis in a complex domain for a differential operator with symbol $\pi(z)=z^q+a_1z^{q-1}+\dots+a_q$, $a_i\in\mathbf C$, is reduced to the problem of a local description of the closed submodules of a module (of entire functions of exponential type) over the ring $\mathbf C[\pi]$ of polynomials of the form $c_0+c_1\pi+\dots+c_n\pi^n$, $c_i\in\mathbf C$.
@article{SM_1993_74_2_a2,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. {I:~A~duality} theorem},
     journal = {Sbornik. Mathematics},
     pages = {309--335},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 309
EP  - 335
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/
LA  - en
ID  - SM_1993_74_2_a2
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem
%J Sbornik. Mathematics
%D 1993
%P 309-335
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/
%G en
%F SM_1993_74_2_a2
I. F. Krasichkov-Ternovskii. Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 309-335. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/