Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 309-335
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of spectral synthesis in a complex domain for a differential operator with symbol $\pi(z)=z^q+a_1z^{q-1}+\dots+a_q$, $a_i\in\mathbf C$, is reduced to the problem of a local description of the closed submodules of a module (of entire functions of exponential type) over the ring $\mathbf C[\pi]$ of polynomials of the form $c_0+c_1\pi+\dots+c_n\pi^n$, $c_i\in\mathbf C$.
@article{SM_1993_74_2_a2,
author = {I. F. Krasichkov-Ternovskii},
title = {Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. {I:~A~duality} theorem},
journal = {Sbornik. Mathematics},
pages = {309--335},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/}
}
TY - JOUR AU - I. F. Krasichkov-Ternovskii TI - Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem JO - Sbornik. Mathematics PY - 1993 SP - 309 EP - 335 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/ LA - en ID - SM_1993_74_2_a2 ER -
%0 Journal Article %A I. F. Krasichkov-Ternovskii %T Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem %J Sbornik. Mathematics %D 1993 %P 309-335 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/ %G en %F SM_1993_74_2_a2
I. F. Krasichkov-Ternovskii. Spectral synthesis in a~complex domain for a~differential operator with constant coefficients. I:~A~duality theorem. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 309-335. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a2/