Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 583-591
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if a quasiconformal automorphism $f\colon B^n\to B^n$ of the unit ball in $\mathbf R^n$ $(n\geqslant 2)$ has coefficient of quasiconformality
$K_f(r)=\sup\limits_{|x|\le r}k(f,x)$ in the ball of radius $r1$ with asymptotic growth such that $\int\limits^1K(r)\,dr\infty$, then it has a radial limit at almost every point of the boundary. This asymptotic growth of $K(r)$ is sharp in a certain sense.
@article{SM_1993_74_2_a16,
author = {M. N. Pantyukhina},
title = {Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball},
journal = {Sbornik. Mathematics},
pages = {583--591},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/}
}
TY - JOUR AU - M. N. Pantyukhina TI - Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball JO - Sbornik. Mathematics PY - 1993 SP - 583 EP - 591 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/ LA - en ID - SM_1993_74_2_a16 ER -
M. N. Pantyukhina. Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 583-591. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/