Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 583-591

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a quasiconformal automorphism $f\colon B^n\to B^n$ of the unit ball in $\mathbf R^n$ $(n\geqslant 2)$ has coefficient of quasiconformality $K_f(r)=\sup\limits_{|x|\le r}k(f,x)$ in the ball of radius $r1$ with asymptotic growth such that $\int\limits^1K(r)\,dr\infty$, then it has a radial limit at almost every point of the boundary. This asymptotic growth of $K(r)$ is sharp in a certain sense.
@article{SM_1993_74_2_a16,
     author = {M. N. Pantyukhina},
     title = {Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball},
     journal = {Sbornik. Mathematics},
     pages = {583--591},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/}
}
TY  - JOUR
AU  - M. N. Pantyukhina
TI  - Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 583
EP  - 591
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/
LA  - en
ID  - SM_1993_74_2_a16
ER  - 
%0 Journal Article
%A M. N. Pantyukhina
%T Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball
%J Sbornik. Mathematics
%D 1993
%P 583-591
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/
%G en
%F SM_1993_74_2_a16
M. N. Pantyukhina. Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 583-591. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/