Asymptotics of the coefficient quasiconformality, and the boundary behavior of a mapping of a ball
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 583-591 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if a quasiconformal automorphism $f\colon B^n\to B^n$ of the unit ball in $\mathbf R^n$ $(n\geqslant 2)$ has coefficient of quasiconformality $K_f(r)=\sup\limits_{|x|\le r}k(f,x)$ in the ball of radius $r<1$ with asymptotic growth such that $\int\limits^1K(r)\,dr<\infty$, then it has a radial limit at almost every point of the boundary. This asymptotic growth of $K(r)$ is sharp in a certain sense.
@article{SM_1993_74_2_a16,
     author = {M. N. Pantyukhina},
     title = {Asymptotics of the coefficient quasiconformality, and the boundary behavior of a~mapping of a~ball},
     journal = {Sbornik. Mathematics},
     pages = {583--591},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/}
}
TY  - JOUR
AU  - M. N. Pantyukhina
TI  - Asymptotics of the coefficient quasiconformality, and the boundary behavior of a mapping of a ball
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 583
EP  - 591
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/
LA  - en
ID  - SM_1993_74_2_a16
ER  - 
%0 Journal Article
%A M. N. Pantyukhina
%T Asymptotics of the coefficient quasiconformality, and the boundary behavior of a mapping of a ball
%J Sbornik. Mathematics
%D 1993
%P 583-591
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/
%G en
%F SM_1993_74_2_a16
M. N. Pantyukhina. Asymptotics of the coefficient quasiconformality, and the boundary behavior of a mapping of a ball. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 583-591. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a16/

[1] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, 1971 | MR

[2] Nakki R., “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A. I, 484 (1970), 1–50 | MR

[3] Vuorinen M., Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, 1988 | MR | Zbl

[4] Gehring F. W., “Rins and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl

[5] Mostov G. D., “Kvazikonformnye otobrazheniya i zhestkost prostranstvennykh giperbolicheskikh form”, Matemetika (sb. per.), 16:5 (1972), 105–157 | Zbl

[6] Zorich V. A., “Asimptotika koeffitsienta kvazikonformnosti i granichnoe povedenie avtomorfizma kruga”, DAN SSSR, 288:2 (1986), 283–285 | MR | Zbl

[7] Perovii M., “Growth of the coefficient of quasiconformality and the boundary correspondence of automorphisms of a ball”, Comment. Math. Helv., 61:1 (1986), 60–66 | DOI | MR

[8] Jenkins J. A., “On quasiconformal mappings”, J. Rat. Mech. and Anal., 5:2 (1956), 343–352 | MR | Zbl

[9] Beurling A., Ahlfors L., “The boundary correspondence under quasifocnformal mappings”, Acta Math., 96:1–2 (1956), 125–142 | DOI | MR | Zbl

[10] Sakai E., “Note on pseudo-analytic functions”, Proc. Japan Acad., 25 (1950), 12–17 | DOI | MR

[11] Gehring F. W., “The Caratheodory convergence theorem for quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. Ser. A. I, 336/11 (1963), 1–21 | MR

[12] Rickman S., “Asymptotic values and angular limits of quasiregular mappings of a ball”, Ann. Acad. Sci. Fenn. Ser A. I, 5 (1980), 185–196 | MR | Zbl

[13] Martio L., Rickman S., “Boundary behavior of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A. I, 507 (1972), 1–17 | MR