Dual systems of integral vectors (general questions and applications to the geometry of positive quadratic forms)
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 541-554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

After giving a brief introduction to our new “theory of dual systems of integer vectors”, we give the first applications to the theory of positive quadratic forms. We consider the question of enumerating the $L$-polytopes of lattices, paying particular attention to the case of five-dimensional lattices. The results reported in this paper were announced earlier by the authors in Doklady [1]; here we give the details.
@article{SM_1993_74_2_a14,
     author = {S. S. Ryshkov and R. M. Erdahl},
     title = {Dual systems of integral vectors (general questions and applications to the geometry of positive quadratic forms)},
     journal = {Sbornik. Mathematics},
     pages = {541--554},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a14/}
}
TY  - JOUR
AU  - S. S. Ryshkov
AU  - R. M. Erdahl
TI  - Dual systems of integral vectors (general questions and applications to the geometry of positive quadratic forms)
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 541
EP  - 554
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a14/
LA  - en
ID  - SM_1993_74_2_a14
ER  - 
%0 Journal Article
%A S. S. Ryshkov
%A R. M. Erdahl
%T Dual systems of integral vectors (general questions and applications to the geometry of positive quadratic forms)
%J Sbornik. Mathematics
%D 1993
%P 541-554
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a14/
%G en
%F SM_1993_74_2_a14
S. S. Ryshkov; R. M. Erdahl. Dual systems of integral vectors (general questions and applications to the geometry of positive quadratic forms). Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 541-554. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a14/

[1] Ryshkov S. S., Erdal R. M., “Dualnye sistemy tselochislennykh vektorov i ikh geometricheskie primeneniya”, DAN SSSR, 164:1, 123–128 | MR

[2] Ryshkov S. S., Erdal R. M., “Dualnye sistemy tselochislennykh vektorov (vychislitelnye aspekty)”, Tr. MIAN, 196 (1991), 161–173 | MR | Zbl

[3] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, Moskva, 1972

[4] Ryshkov S. S., Baranovskii E. P., “Klassicheskie metody teorii reshetchatykh upakovok”, UMN, 34:4 (1979), 2–63 | MR

[5] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62

[6] Voronoi G. F., “Issledovaniya o primitivnykh paralelloedrakh”, Sobr. soch., t. 2, Izd-vo AN USSR, Kiev, 1952, 239–368; J. reine und angew. Math., 134 (1908), 198–287 ; 136 (1909), 67–179 | Zbl

[7] Ryshkov S. S., Erdal R. M., “Geometriya tselochislennykh kornei nekotorykh kvadratnykh uravnenii s mnogimi peremennymi”, DAN, 267:3 (1982), 561–563 | MR | Zbl

[8] Ryshkov S. S., Erdal R. M., “Poetazhnoe postroenie $L$-tel reshetok”, UMN, 44:2 (1989), 241–242 | MR

[9] Voronoi G. F., “O nekotorykh svoistvakh polozhitelnykh sovershennykh form”, Sobr. soch., t. 2, Izd-vo AN USSR, Kiev, 1952, 171–238; J. reine und angew. Math., 133 (1908), 97–178 | Zbl

[10] Ryshkov S. S., Baranovskii E. P., “$C$-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii)”, Tr. MIAN, 137 (1976), 3–131 | MR

[11] Erdahl R. M.,Ryshkov S. S., “The Empty Sphere, 1”, Can. J. Math., 39 (1987), 794–824 | MR | Zbl

[12] Baranovskii E. P., “Ob'emy $L$-simpleksov pyatimernykh reshetok”, Matem. zametki, 13:5 (1973), 771–782 | MR | Zbl

[13] Erdahl R. M.,Ryshkov S. S., “The Empty Sphere, 2”, Can. J. Math., 40 (1988), 1058–1073 | MR | Zbl

[14] Erdahl R. M., A convex set of second order in homogeneous polinomials with applications to quantum mechanical many-body theory, 40, Queen's Univ. Press, 1975, p. 1–106