On the oriented degree of a certain class of perturbations of Fredholm mappings, and on bifurcation of solutions of a nonlinear boundary value problem with noncompact perturbations
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 487-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of oriented degree is extended to the class of mappings of the form $f-g$, where $f$ is a proper Fredholm mapping of nonnegative index and $g$ a continuous $f$-compactly restrictable mapping. In the case when $f$ is a Fredholm mapping of zero index and $f$ and $g$ are equivariant with respect to the action of the circle and the torus, formulas are obtained which express the degree of these mappings in terms of invariants of representations of the corresponding groups. An application to the investigation of the global behavior of a bifurcation branch of a certain nonlinear boundary value problem is given.
@article{SM_1993_74_2_a11,
     author = {V. G. Zvyagin},
     title = {On the oriented degree of a certain class of perturbations of {Fredholm} mappings, and on bifurcation of solutions of a~nonlinear boundary value problem with noncompact perturbations},
     journal = {Sbornik. Mathematics},
     pages = {487--512},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/}
}
TY  - JOUR
AU  - V. G. Zvyagin
TI  - On the oriented degree of a certain class of perturbations of Fredholm mappings, and on bifurcation of solutions of a nonlinear boundary value problem with noncompact perturbations
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 487
EP  - 512
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/
LA  - en
ID  - SM_1993_74_2_a11
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%T On the oriented degree of a certain class of perturbations of Fredholm mappings, and on bifurcation of solutions of a nonlinear boundary value problem with noncompact perturbations
%J Sbornik. Mathematics
%D 1993
%P 487-512
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/
%G en
%F SM_1993_74_2_a11
V. G. Zvyagin. On the oriented degree of a certain class of perturbations of Fredholm mappings, and on bifurcation of solutions of a nonlinear boundary value problem with noncompact perturbations. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 487-512. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/

[1] Elworthy K. D., Tromba A. J., “Differential structures and Fredholm maps on Banach manifolds”, Proc. Sympos. Pure Math., Global Analysis, 15, 1970, 49–94 | MR

[2] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl

[3] Zvyagin V. G., Ratiner N. M., “Stepen vpolne nepreryvnykh vozmuschenii fredgolmovykh otobrazhenii i ee prilozhenie k bifurkatsii reshenii”, DAN USSR. Ser. A, 1989, no. 6, 8–11 | MR | Zbl

[4] Rabinowitz P. H., “A global theorem for nonlinear eigenvalue problems and applications”, Contrib. Nonlinear Fcl. Anal., Academic Press, 1971, 11–36 | MR

[5] Ratiner N. M., “K teorii stepeni fredgolmovykh otobrazhenii mnogoobrazii”, Uravneniya na mnogoobraziyakh, Novoe v globalnom analize, Voronezh, 1982, 126–129 | MR | Zbl

[6] Dmitrienko V. G., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Matem. zametki, 31:5 (1982), 801–812 | MR | Zbl

[7] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[8] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979 | MR

[9] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere - Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl

[10] Mostow G. D., “Cohomology of topological groups and solvmanifolds”, Ann. Math., 73:1 (1961), 20–48 | DOI | MR | Zbl

[11] Montgomery D., Zippin L., Topological transformation groups, Wiley (Interscience), N. Y., 1965 | MR

[12] Izrailevich Ya. A., “Indeks polusvobodnogo lineinogo periodicheskogo otobrazheniya”, Tr. matem. f-ta VGU, no. 6, Voronezh, 1972, 27–32

[13] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[14] Zvyagin V. G., Izrailevich Ya. A., “Vychislenie vrascheniya konechnomernykh i vpolne nepreryvnykh vektornykh polei, ekvivariantnykh otnositelno deistvii okruzhnostei i torov”, Sovremennye algebraicheskie i funktsionalno-analiticheskie metody resheniya zadach analiza, Voronezh, 1990, 69–83, Dep. v VINITI. 16.02.90, No 965-V90

[15] Agmon S., Duglis A., Nirenberg L., Otsenki granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, IL, M., 1962

[16] Skrypnik I. V., “Topologicheskie metody issledovaniya obschikh nelineinykh ellipticheskikh granichnykh zadach”, Geometriya i topologiya v globalnykh nelineinykh zadachakh, Novoe v globalnom analize, Voronezh, 1984, 68–91 | MR | Zbl

[17] Sobolevskii P. E., “Ob odnom neravenstve dlya ellipticheskikh operatorov”, Trudy seminara po funktsionalnomu analizu, no. 6, Voronezh, 1958, 105–113

[18] Grabelkovskii M. N., “O nekompaktno vozmuschennykh ellipticheskikh kraevykh zadachakh”, Kachestvennye metody issledovaniya operatornykh uravnenii, Yaroslavl, 1988, 96–100

[19] Grabelkovskii M. N., Razreshimost silno nelineinykh kraevykh zadach ellipticheskogo i parabolicheskogo tipa, Dis. ... kand. fiz.-mat. nauk., Voronezh, 1989

[20] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[21] Zvyagin V. G., Ratiner N. M., “Orientirovannaya stepen fredgolmovykh otobrazhenii neotritsatelnogo indeksa i ee prilozhenie k zadache o globalnoi bifurkatsii reshenii”, Algebraicheskie voprosy analiza i topologii, Novoe v globalnom analize, Voronezh, 1990, 3–17 | MR | Zbl