@article{SM_1993_74_2_a11,
author = {V. G. Zvyagin},
title = {On the oriented degree of a certain class of perturbations of {Fredholm} mappings, and on bifurcation of solutions of a~nonlinear boundary value problem with noncompact perturbations},
journal = {Sbornik. Mathematics},
pages = {487--512},
year = {1993},
volume = {74},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/}
}
TY - JOUR AU - V. G. Zvyagin TI - On the oriented degree of a certain class of perturbations of Fredholm mappings, and on bifurcation of solutions of a nonlinear boundary value problem with noncompact perturbations JO - Sbornik. Mathematics PY - 1993 SP - 487 EP - 512 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/ LA - en ID - SM_1993_74_2_a11 ER -
%0 Journal Article %A V. G. Zvyagin %T On the oriented degree of a certain class of perturbations of Fredholm mappings, and on bifurcation of solutions of a nonlinear boundary value problem with noncompact perturbations %J Sbornik. Mathematics %D 1993 %P 487-512 %V 74 %N 2 %U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/ %G en %F SM_1993_74_2_a11
V. G. Zvyagin. On the oriented degree of a certain class of perturbations of Fredholm mappings, and on bifurcation of solutions of a nonlinear boundary value problem with noncompact perturbations. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 487-512. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a11/
[1] Elworthy K. D., Tromba A. J., “Differential structures and Fredholm maps on Banach manifolds”, Proc. Sympos. Pure Math., Global Analysis, 15, 1970, 49–94 | MR
[2] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl
[3] Zvyagin V. G., Ratiner N. M., “Stepen vpolne nepreryvnykh vozmuschenii fredgolmovykh otobrazhenii i ee prilozhenie k bifurkatsii reshenii”, DAN USSR. Ser. A, 1989, no. 6, 8–11 | MR | Zbl
[4] Rabinowitz P. H., “A global theorem for nonlinear eigenvalue problems and applications”, Contrib. Nonlinear Fcl. Anal., Academic Press, 1971, 11–36 | MR
[5] Ratiner N. M., “K teorii stepeni fredgolmovykh otobrazhenii mnogoobrazii”, Uravneniya na mnogoobraziyakh, Novoe v globalnom analize, Voronezh, 1982, 126–129 | MR | Zbl
[6] Dmitrienko V. G., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Matem. zametki, 31:5 (1982), 801–812 | MR | Zbl
[7] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[8] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979 | MR
[9] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere - Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl
[10] Mostow G. D., “Cohomology of topological groups and solvmanifolds”, Ann. Math., 73:1 (1961), 20–48 | DOI | MR | Zbl
[11] Montgomery D., Zippin L., Topological transformation groups, Wiley (Interscience), N. Y., 1965 | MR
[12] Izrailevich Ya. A., “Indeks polusvobodnogo lineinogo periodicheskogo otobrazheniya”, Tr. matem. f-ta VGU, no. 6, Voronezh, 1972, 27–32
[13] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[14] Zvyagin V. G., Izrailevich Ya. A., “Vychislenie vrascheniya konechnomernykh i vpolne nepreryvnykh vektornykh polei, ekvivariantnykh otnositelno deistvii okruzhnostei i torov”, Sovremennye algebraicheskie i funktsionalno-analiticheskie metody resheniya zadach analiza, Voronezh, 1990, 69–83, Dep. v VINITI. 16.02.90, No 965-V90
[15] Agmon S., Duglis A., Nirenberg L., Otsenki granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, IL, M., 1962
[16] Skrypnik I. V., “Topologicheskie metody issledovaniya obschikh nelineinykh ellipticheskikh granichnykh zadach”, Geometriya i topologiya v globalnykh nelineinykh zadachakh, Novoe v globalnom analize, Voronezh, 1984, 68–91 | MR | Zbl
[17] Sobolevskii P. E., “Ob odnom neravenstve dlya ellipticheskikh operatorov”, Trudy seminara po funktsionalnomu analizu, no. 6, Voronezh, 1958, 105–113
[18] Grabelkovskii M. N., “O nekompaktno vozmuschennykh ellipticheskikh kraevykh zadachakh”, Kachestvennye metody issledovaniya operatornykh uravnenii, Yaroslavl, 1988, 96–100
[19] Grabelkovskii M. N., Razreshimost silno nelineinykh kraevykh zadach ellipticheskogo i parabolicheskogo tipa, Dis. ... kand. fiz.-mat. nauk., Voronezh, 1989
[20] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl
[21] Zvyagin V. G., Ratiner N. M., “Orientirovannaya stepen fredgolmovykh otobrazhenii neotritsatelnogo indeksa i ee prilozhenie k zadache o globalnoi bifurkatsii reshenii”, Algebraicheskie voprosy analiza i topologii, Novoe v globalnom analize, Voronezh, 1990, 3–17 | MR | Zbl