The Euler equations with dissipation
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 475-485

Voir la notice de l'article provenant de la source Math-Net.Ru

Steady-state and time-dependent problems are studied for the equation $$ \partial_tu+\Pi(\nabla_uu)=-\sigma u+f, $$ Where $u\in TM$, $M$ is a two-dimensional closed manifold, and $\Pi$ is the projection onto the subspace of solenoidal vector fields that admit a single-valued flow function. Existence of steady-state solutions is proved. For the evolution problem Lyapunov stability of the zero solution in Sobolev–Liouville spaces is proved by the method of vanishing viscosity. The existence of generalized weak $(\Pi W_{2k}^1,\Pi W_{2kw}^1)$ attractors, $k\geqslant1$ an integer, is proved. A $*$-weak $(\mathring{L}_\infty,\mathring{L}_{\infty\,*\text{-}\omega})$ attractor is constructed in the phase space $\mathring{L}_\infty$ for the velocity vortex equation.
@article{SM_1993_74_2_a10,
     author = {A. A. Ilyin},
     title = {The {Euler} equations with dissipation},
     journal = {Sbornik. Mathematics},
     pages = {475--485},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - The Euler equations with dissipation
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 475
EP  - 485
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/
LA  - en
ID  - SM_1993_74_2_a10
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T The Euler equations with dissipation
%J Sbornik. Mathematics
%D 1993
%P 475-485
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/
%G en
%F SM_1993_74_2_a10
A. A. Ilyin. The Euler equations with dissipation. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 475-485. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/