The Euler equations with dissipation
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 475-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Steady-state and time-dependent problems are studied for the equation $$ \partial_tu+\Pi(\nabla_uu)=-\sigma u+f, $$ Where $u\in TM$, $M$ is a two-dimensional closed manifold, and $\Pi$ is the projection onto the subspace of solenoidal vector fields that admit a single-valued flow function. Existence of steady-state solutions is proved. For the evolution problem Lyapunov stability of the zero solution in Sobolev–Liouville spaces is proved by the method of vanishing viscosity. The existence of generalized weak $(\Pi W_{2k}^1,\Pi W_{2kw}^1)$ attractors, $k\geqslant1$ an integer, is proved. A $*$-weak $(\mathring{L}_\infty,\mathring{L}_{\infty\,*\text{-}\omega})$ attractor is constructed in the phase space $\mathring{L}_\infty$ for the velocity vortex equation.
@article{SM_1993_74_2_a10,
     author = {A. A. Ilyin},
     title = {The {Euler} equations with dissipation},
     journal = {Sbornik. Mathematics},
     pages = {475--485},
     year = {1993},
     volume = {74},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - The Euler equations with dissipation
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 475
EP  - 485
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/
LA  - en
ID  - SM_1993_74_2_a10
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T The Euler equations with dissipation
%J Sbornik. Mathematics
%D 1993
%P 475-485
%V 74
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/
%G en
%F SM_1993_74_2_a10
A. A. Ilyin. The Euler equations with dissipation. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 475-485. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a10/

[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[2] Babin A. V., Vishik M. I., “Maksimalnye attraktory polugrupp, sootvetstvuyuschikh evolyutsionnym differentsialnym uravneniyam”, Matem. sb., 126 (168) (1985), 397–419 | MR

[3] Ilin A. A., “Uravneniya Nave-Stoksa i Eilera na dvumernykh zamknutykh mnogoobraziyakh”, Matem. sb., 181:4 (1990), 521–539

[4] Ilin A. A., Filatov A. N., “Ustoichivost statsionarnykh reshenii uravnenii barotropnoi atmosfery po lineinomu priblizheniyu”, DAN SSSR, 306:6 (1989), 1362–1365

[5] Dymnikov V. P., Skiba Yu. N., “Barotropnaya neustoichivost zonalno-nesimmetrichnykh atmosfernykh potokov”, Vychislitelnye protsessy i sistemy, no. 4, Nauka, M., 1986, 63–104 | MR

[6] Skiba Yu. N., Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989

[7] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo RGU, Rostov na-Donu, 1984 | Zbl

[8] Sazonov A. I., Yudovich V. I., “Ustoichivost statsionarnykh reshenii parabolicheskikh uravnenii i sistemy Nave - Stoksa vo vsem prostranstve”, Sib. matem. zhurn., 29:1 (1988), 151–158 | MR

[9] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[10] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[11] Temam R., Uravneniya Nave - Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[12] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[13] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[14] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[15] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[16] Wolansky G., “Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation”, Comm. Pure and Appl. Math., 41:1 (1988), 19–46 | DOI | MR | Zbl

[17] Kato T., “Remarks on the Euler and Navier - Stokes equations in $\mathrm{R}^2$”, Proc. Symp. in pure math., 45:2 (1986), 1–7 | MR | Zbl

[18] Kato T., Ponce G., “Well-posedness of Euler and Navier - Stokes equations in Lebesque spaces $L_s^p(\mathrm{R}^2)$”, Revista mat. Iberoamericana, 2:1, 2 (1986), 73–88 | MR

[19] Kato T., Ponce G., “Commutator estimates and the Euler and Navier - Stokes equations”, Comm. pure and appl. math., 41:7 (1988), 891–907 | DOI | MR | Zbl

[20] Beirao da Veiga H., “On the solutions in the large of the two dimensional flow of a nonviscous incompressible fluid”, J. diff. equat., 54 (1984), 373–389 | DOI | MR

[21] Saut J.-C., “Remarks on the damped stationary Euler equations”, Diff. and integral equat., 3:5 (1990), 801–812 | MR | Zbl

[22] Barcilon V., Constantin P., Titi E. S., “Existence of solutions to the Stommel-Charney model of the Gulf stream”, SIAM J. on math. anal., 19:6 (1988), 1355–1364 | DOI | MR | Zbl