Approximations of the exponential function and relative closeness of stable signals
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 291-307

Voir la notice de l'article provenant de la source Math-Net.Ru

The results presented here are based on the use of approximations of analytic functions in certain questions involving numerical methods for “physical” equations. The concepts of relative closeness and of stability of signals are introduced. A simple method is given for approximate inversion of the Laplace transformation, with an estimate of the relative error. Also, estimates are obtained for the dimensions of spaces in which it is possible to find approximate solutions of multidimensional systems of linear equations, as a function of the accuracy of approximation and the “size” of the spectrum of the operator.
@article{SM_1993_74_2_a1,
     author = {L. A. Balashov and Yu. A. Dreizin and M. S. Mel'nikov},
     title = {Approximations of the exponential function and relative closeness of stable signals},
     journal = {Sbornik. Mathematics},
     pages = {291--307},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a1/}
}
TY  - JOUR
AU  - L. A. Balashov
AU  - Yu. A. Dreizin
AU  - M. S. Mel'nikov
TI  - Approximations of the exponential function and relative closeness of stable signals
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 291
EP  - 307
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a1/
LA  - en
ID  - SM_1993_74_2_a1
ER  - 
%0 Journal Article
%A L. A. Balashov
%A Yu. A. Dreizin
%A M. S. Mel'nikov
%T Approximations of the exponential function and relative closeness of stable signals
%J Sbornik. Mathematics
%D 1993
%P 291-307
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a1/
%G en
%F SM_1993_74_2_a1
L. A. Balashov; Yu. A. Dreizin; M. S. Mel'nikov. Approximations of the exponential function and relative closeness of stable signals. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 291-307. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a1/