Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 271-290
Voir la notice de l'article provenant de la source Math-Net.Ru
With $E_{n,n}(|x|;[-1,1])$ denoting the error of best uniform rational approximation from
$\pi_{n,n}$ to $|x|$ on $[-1,1]$, we determine the numbers
$\{E_{2n,2n}(|x|;[-1,1])\}_{n=1}^{40}$, where each of these numbers was calculated with a precision of at least 200 significant digits. With these numbers, the Richardson extrapolation method was applied to the products
$\{e^{\pi\sqrt{2n}}E_{2n,2n}(|x|;[-1,1])\}_{n=1}^{40}$, and it appears, to at least 10 significant digits, that
$$
8\stackrel{?}{=}\lim_{n\to\infty}e^{\pi\sqrt{2n}}E_{2n,2n}(|x|;[-1,1]),
$$
which gives rise to an interesting new conjecture in the theory of rational approximation.
@article{SM_1993_74_2_a0,
author = {R. S. Varga and A. Ruttan and A. J. Carpenter},
title = {Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$},
journal = {Sbornik. Mathematics},
pages = {271--290},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a0/}
}
TY - JOUR AU - R. S. Varga AU - A. Ruttan AU - A. J. Carpenter TI - Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$ JO - Sbornik. Mathematics PY - 1993 SP - 271 EP - 290 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a0/ LA - en ID - SM_1993_74_2_a0 ER -
R. S. Varga; A. Ruttan; A. J. Carpenter. Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 271-290. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a0/