Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$
Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 271-290

Voir la notice de l'article provenant de la source Math-Net.Ru

With $E_{n,n}(|x|;[-1,1])$ denoting the error of best uniform rational approximation from $\pi_{n,n}$ to $|x|$ on $[-1,1]$, we determine the numbers $\{E_{2n,2n}(|x|;[-1,1])\}_{n=1}^{40}$, where each of these numbers was calculated with a precision of at least 200 significant digits. With these numbers, the Richardson extrapolation method was applied to the products $\{e^{\pi\sqrt{2n}}E_{2n,2n}(|x|;[-1,1])\}_{n=1}^{40}$, and it appears, to at least 10 significant digits, that $$ 8\stackrel{?}{=}\lim_{n\to\infty}e^{\pi\sqrt{2n}}E_{2n,2n}(|x|;[-1,1]), $$ which gives rise to an interesting new conjecture in the theory of rational approximation.
@article{SM_1993_74_2_a0,
     author = {R. S. Varga and A. Ruttan and A. J. Carpenter},
     title = {Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$},
     journal = {Sbornik. Mathematics},
     pages = {271--290},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_2_a0/}
}
TY  - JOUR
AU  - R. S. Varga
AU  - A. Ruttan
AU  - A. J. Carpenter
TI  - Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 271
EP  - 290
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_2_a0/
LA  - en
ID  - SM_1993_74_2_a0
ER  - 
%0 Journal Article
%A R. S. Varga
%A A. Ruttan
%A A. J. Carpenter
%T Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$
%J Sbornik. Mathematics
%D 1993
%P 271-290
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_2_a0/
%G en
%F SM_1993_74_2_a0
R. S. Varga; A. Ruttan; A. J. Carpenter. Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$. Sbornik. Mathematics, Tome 74 (1993) no. 2, pp. 271-290. http://geodesic.mathdoc.fr/item/SM_1993_74_2_a0/