On the representation of functions as a sum of several compositions
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 119-130
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\varphi_i$ be continuous mappings of a compactum $X$ onto compacta $Y_i$, $i=1,\dots,n$. The following theorem is known for $n=2$: if any bounded function $f$ on $X$ can be represented in the form $f=g_1\circ\varphi_1+g_2\circ\varphi_2$, where $g_1$ and $g_2$ are bounded functions on $Y_1$ and $Y_2$, then any continuous $f$ can be represented in the same form with continuous $g_1$ and $g_2$. An example is constructed showing that the analogous theorem is false for $n>2$.
@article{SM_1993_74_1_a9,
author = {V. A. Medvedev},
title = {On the representation of functions as a~sum of several compositions},
journal = {Sbornik. Mathematics},
pages = {119--130},
year = {1993},
volume = {74},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a9/}
}
V. A. Medvedev. On the representation of functions as a sum of several compositions. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a9/
[1] Sternfeld Y., “Uniformly separating families of functions”, Israel J. Math., 29 (1978), 61–91 | DOI | MR | Zbl
[2] Khavinson S. Ya., “Predstavlenie funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. vuzov. Ser. Matematika, 1985, no. 2, 66–73 | MR | Zbl
[3] Arnold V. I., “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR
[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962
[5] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR