On the representation of functions as a sum of several compositions
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 119-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\varphi_i$ be continuous mappings of a compactum $X$ onto compacta $Y_i$, $i=1,\dots,n$. The following theorem is known for $n=2$: if any bounded function $f$ on $X$ can be represented in the form $f=g_1\circ\varphi_1+g_2\circ\varphi_2$, where $g_1$ and $g_2$ are bounded functions on $Y_1$ and $Y_2$, then any continuous $f$ can be represented in the same form with continuous $g_1$ and $g_2$. An example is constructed showing that the analogous theorem is false for $n>2$.
@article{SM_1993_74_1_a9,
     author = {V. A. Medvedev},
     title = {On the representation of functions as a~sum of several compositions},
     journal = {Sbornik. Mathematics},
     pages = {119--130},
     year = {1993},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a9/}
}
TY  - JOUR
AU  - V. A. Medvedev
TI  - On the representation of functions as a sum of several compositions
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 119
EP  - 130
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a9/
LA  - en
ID  - SM_1993_74_1_a9
ER  - 
%0 Journal Article
%A V. A. Medvedev
%T On the representation of functions as a sum of several compositions
%J Sbornik. Mathematics
%D 1993
%P 119-130
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a9/
%G en
%F SM_1993_74_1_a9
V. A. Medvedev. On the representation of functions as a sum of several compositions. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a9/

[1] Sternfeld Y., “Uniformly separating families of functions”, Israel J. Math., 29 (1978), 61–91 | DOI | MR | Zbl

[2] Khavinson S. Ya., “Predstavlenie funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. vuzov. Ser. Matematika, 1985, no. 2, 66–73 | MR | Zbl

[3] Arnold V. I., “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR

[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[5] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR