Prime Malcev superalgebras
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 101-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that any prime Malcev superalgebra of characteristic $\ne 2,3$ with nonzero odd part is a Lie superalgebra.
@article{SM_1993_74_1_a7,
     author = {I. P. Shestakov},
     title = {Prime {Malcev} superalgebras},
     journal = {Sbornik. Mathematics},
     pages = {101--110},
     year = {1993},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a7/}
}
TY  - JOUR
AU  - I. P. Shestakov
TI  - Prime Malcev superalgebras
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 101
EP  - 110
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a7/
LA  - en
ID  - SM_1993_74_1_a7
ER  - 
%0 Journal Article
%A I. P. Shestakov
%T Prime Malcev superalgebras
%J Sbornik. Mathematics
%D 1993
%P 101-110
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a7/
%G en
%F SM_1993_74_1_a7
I. P. Shestakov. Prime Malcev superalgebras. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a7/

[1] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR

[2] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[3] Zelmanov E. I., Shestakov I. P., “Pervichnye alternativnye superalgebry i nilpotentnost radikala svobodnoi alternativnoi algebry”, XIX Vsesoyuz. algebraicheskaya konf., Tez. soobsch., ch. 2, Lvov, 1987

[4] Filippov V. T., “Pervichnye algebry Maltseva”, Mat. zametki, 31:5 (1982), 669–678 | MR | Zbl

[5] Filippov V. T., “O vlozhenii maltsevskikh algebr v alternativnye”, Algebra i logika, 22:4 (1983), 443–465 | MR

[6] Filippov V. T., “Ob odnom $\mathrm{T}$-ideale algebry Maltseva”, Sib. matem. zhurn., 29:3 (1988), 148–155 | MR

[7] Kac V. G., “Classification of simple $\mathrm{Z}$-graded Lie superalgebras and simple Jordan superalgebras”, Comm. in Alg., 13 (1977), 1375–1400 | DOI | MR

[8] Sagle A., “Malcev algebras”, Trans. Amer. Math. Soc., 101:3 (1961), 426–458 | DOI | MR | Zbl

[9] Scheunert M., The theory of Lie superalgebras. An introduction, Lecture Notes in Math., 716, 1979 | MR | Zbl

[10] Zelmanov E. I., “Jordan superalgebras”, Mathematisches Forschungsinstitut Obervolwach. Tagungsbericht, 36 (1988), 18