Finite filtering semigroups
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 79-99

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup is called filtering if each of its subsemigroups has the smallest (with respect to inclusion) generating set. It is proved in this article that every maximal chain of nonempty subsemigroups of a finite filtering semigroup has length equal to the order of the semigroup, and that filtering semigroups are characterized by this property in the class of finite semigroups. The main result is a characterization of the class of finite filtering semigroups by means of forbidden divisors, to which end the author finds all finite nonfiltering semigroups all of whose proper divisors are filtering semigroups.
@article{SM_1993_74_1_a6,
     author = {V. M. Shyrayev},
     title = {Finite filtering semigroups},
     journal = {Sbornik. Mathematics},
     pages = {79--99},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a6/}
}
TY  - JOUR
AU  - V. M. Shyrayev
TI  - Finite filtering semigroups
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 79
EP  - 99
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a6/
LA  - en
ID  - SM_1993_74_1_a6
ER  - 
%0 Journal Article
%A V. M. Shyrayev
%T Finite filtering semigroups
%J Sbornik. Mathematics
%D 1993
%P 79-99
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a6/
%G en
%F SM_1993_74_1_a6
V. M. Shyrayev. Finite filtering semigroups. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 79-99. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a6/