On a property of the subdifferential
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 63-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Semicontinuous real functions are considered. The following property is established for the Dini directional semiderivative and the Dini semidifferential (the subdifferential). If at some point the semiderivative is positive in a convex cone of directions, then arbitrarily close to the point under consideration there exists a point at which the function is subdifferentiable and has a subgradient belonging to the positively dual cone. This result is used in the theory of the Hamilton–Jacobi equations to prove the equivalence of various types of definitions of generalized solutions.
@article{SM_1993_74_1_a5,
     author = {A. I. Subbotin},
     title = {On a~property of the subdifferential},
     journal = {Sbornik. Mathematics},
     pages = {63--78},
     year = {1993},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a5/}
}
TY  - JOUR
AU  - A. I. Subbotin
TI  - On a property of the subdifferential
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 63
EP  - 78
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a5/
LA  - en
ID  - SM_1993_74_1_a5
ER  - 
%0 Journal Article
%A A. I. Subbotin
%T On a property of the subdifferential
%J Sbornik. Mathematics
%D 1993
%P 63-78
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a5/
%G en
%F SM_1993_74_1_a5
A. I. Subbotin. On a property of the subdifferential. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a5/

[1] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M. | MR

[2] Klark F., Negladkii analiz, Nauka, M., 1988 | MR | Zbl

[3] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[4] Oben-Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[5] Pshenichnyi B. N., “O neobkhodimykh usloviyakh ekstremuma dlya negladkikh funktsii”, Kibernetika, 1977, no. 6, 92–96

[6] Subbotin A. I., Subbotina N. N., “Neobkhodimye i dostatochnye usloviya dlya kusochno-gladkoi tseny differentsialnoi igry”, DAN SSSR, 243:4 (1978), 862–865 | MR | Zbl

[7] Subbotin A. I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, DAN SSSR, 254:2, 293–297 | MR | Zbl

[8] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton - Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[9] Crandall M. G., Evans L. C., Lions P.-L., “Some properties of viscosity solutions of Hamilton - Jacobi equations”, Trans. Amer. Math. Soc., 283:2 (1984), 487–502 | DOI | MR

[10] Subbotin A. I., Tarasyev A. M., “Stability properties of the value function of differential game and viscosity solutions of Hamilton-Jacobi equations”, Probl. Control and Inform. Theory, 15:6 (1986), 451–463 | MR | Zbl

[11] Lions P.-L., Souganidis P. E., “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs equation”, SIAM J. Control and Optimization, 23 (1985), 566–583 | DOI | MR | Zbl

[12] Guseinov H. G., Subbotin A. I., Ushakov V. N., “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Probl. Control and Inform. Theory, 14:3 (1985), 155–167 | MR | Zbl

[13] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[14] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[15] Subbotin A. I., Tarasev A. M., “Sopryazhennye proizvodnye funktsii tseny differentsialnoi igry”, DAN SSSR, 283:3 (1985), 559–564 | MR | Zbl