Fractional iterates of functions analytic in the unit disk, with given fixed points
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 29-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An infinitesimal description is obtained for fractional iterates of analytic functions on the unit disk under the condition that the functions and their iterates do not move fixed points on the unit circle at which they have finite angular derivatives.
@article{SM_1993_74_1_a2,
     author = {V. V. Goryainov},
     title = {Fractional iterates of functions analytic in the unit disk, with given fixed points},
     journal = {Sbornik. Mathematics},
     pages = {29--46},
     year = {1993},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a2/}
}
TY  - JOUR
AU  - V. V. Goryainov
TI  - Fractional iterates of functions analytic in the unit disk, with given fixed points
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 29
EP  - 46
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a2/
LA  - en
ID  - SM_1993_74_1_a2
ER  - 
%0 Journal Article
%A V. V. Goryainov
%T Fractional iterates of functions analytic in the unit disk, with given fixed points
%J Sbornik. Mathematics
%D 1993
%P 29-46
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a2/
%G en
%F SM_1993_74_1_a2
V. V. Goryainov. Fractional iterates of functions analytic in the unit disk, with given fixed points. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 29-46. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a2/

[1] Schroeder H., “Uber itierte Funktionen”, Math. Ann., 3 (1871), 296–322 | DOI

[2] Koenigs G., “Recherches sur les intégrales des certaines equations fonctionelles”, Ann. Ecole Norm. Sup., 1(3) (1884), 3–41 | MR | Zbl

[3] Hadamard J., “Two works on iteration and related questions”, Bull. Amer. Math. Soc., 50 (1944), 67–75 | DOI | MR | Zbl

[4] Cowen C. C., “Iteration and the solution of functional equations analytic in the unit disk”, Trans. Amer. Math. Soc., 265 (1981), 69–95 | DOI | MR | Zbl

[5] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966

[6] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR

[7] Berkson E., Porta H., “Semigroups of analytic functions and composition operators”, Michigan Math. J., 25 (1978), 101–115 | DOI | MR | Zbl

[8] Goryainov V. V., “Polugruppy konformnykh otobrazhenii”, Matem. sb., 129(171) (1986), 451–472 | MR | Zbl

[9] Denjov A., “Sur l'iteration des fonctions analytiques”, C.R. Acad. Sci. Paris Sér. A, 182 (1926), 255–257

[10] Wolff J., “Sur l'iteration des fonctions”, C.R. Acad. Sci. Paris Sér. A, 182 (1926), 42–43 ; 200–201 | Zbl | Zbl

[11] Nevanlinna R., Odnoznachnye analiticheskie funktsii, OGIZ, M.–L., 1941

[12] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR | Zbl

[13] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[14] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[15] Duren P. L., Univalent functions, Springer-Verlag, New York, 1983 | MR | Zbl

[16] Ahlfors L. V., Conformal invariants. Topics in Geometric function theory, McGraw-Hill Book Company, New York, 1973 | MR | Zbl