Projection-net widths and lattice packings
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 251-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Problems of approximation in a class of function spaces, including Sobolev spaces, by subspaces of finite-element type generated by translations of a lattice of given functions are considered. Widths that describe the approximation properties of such subspaces are defined, and their exact values are enumerated. Necessary and sufficient conditions are obtained for the optimality of subspaces on which these widths are realized. Criteria for the optimality of lattices in terms of the density of lattice packings of certain functions (for Sobolev spaces, of densities of packings by identical spheres) are established. Problems of comparison of the widths used in this article with the Kolmogorov widths of the same mean dimension are discussed.
@article{SM_1993_74_1_a16,
     author = {N. A. Strelkov},
     title = {Projection-net widths and lattice packings},
     journal = {Sbornik. Mathematics},
     pages = {251--269},
     year = {1993},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/}
}
TY  - JOUR
AU  - N. A. Strelkov
TI  - Projection-net widths and lattice packings
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 251
EP  - 269
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/
LA  - en
ID  - SM_1993_74_1_a16
ER  - 
%0 Journal Article
%A N. A. Strelkov
%T Projection-net widths and lattice packings
%J Sbornik. Mathematics
%D 1993
%P 251-269
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/
%G en
%F SM_1993_74_1_a16
N. A. Strelkov. Projection-net widths and lattice packings. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 251-269. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/

[1] Kolmogoroff A. N., “Über die beste Annäherung von Funktionen einer gegebenen Funktionklassen”, Ann. Math., 37 (1936), 107–110 | DOI | MR | Zbl

[2] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[3] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 2. Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986

[4] Volevich L. R., Paneyakh B. P., “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, UMN, 20:1 (1965), 3–74 | MR | Zbl

[5] Strelkov N. A., “Optimalnye koordinatnye funktsii v proektsionno-raznostnykh metodakh, poperechniki i reshetchatye ukladki”, DAN SSSR, 309:3 (1989), 550–554 | MR

[6] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[7] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[8] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[10] Milnor Dzh., Khyuzmoller D., Simmetricheskie bilineinye formy, Nauka, M., 1986 | MR | Zbl

[11] Shennon K., Raboty po teorii informatsii i kibernetike, IL, M., 1963

[12] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR

[13] Tikhomirov V. M., “Ob approksimativnykh kharakteristikakh gladkikh funktsii mnogikh peremennykh”, Tr. konf. po differentsialnym uravneniyam i vychislitelnoi matematike, Nauka, Novosibirsk, 1980, 183–188 | MR

[14] Din Zung, Magaril-Ilyaev G. G., “Zadachi tipa Bernshteina i Favara i srednyaya $\varepsilon$-razmernost nekotorykh klassov funktsii”, DAN SSSR, 249:4 (1979), 783–786 | MR | Zbl

[15] Din Zung, “Srednyaya $\varepsilon$-razmeryost klassa funktsii $B_{G,p}$”, Matem. zametki, 28:5 (1980), 727–736 | MR | Zbl

[16] Magaril-Ilyaev G. G., “$\varphi$-srednie poperechniki klassov funktsii na pryamoi”, UMN, 45:2 (1990), 211–212 | MR

[17] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl