Projection-net widths and lattice packings
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 251-269

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of approximation in a class of function spaces, including Sobolev spaces, by subspaces of finite-element type generated by translations of a lattice of given functions are considered. Widths that describe the approximation properties of such subspaces are defined, and their exact values are enumerated. Necessary and sufficient conditions are obtained for the optimality of subspaces on which these widths are realized. Criteria for the optimality of lattices in terms of the density of lattice packings of certain functions (for Sobolev spaces, of densities of packings by identical spheres) are established. Problems of comparison of the widths used in this article with the Kolmogorov widths of the same mean dimension are discussed.
@article{SM_1993_74_1_a16,
     author = {N. A. Strelkov},
     title = {Projection-net widths and lattice packings},
     journal = {Sbornik. Mathematics},
     pages = {251--269},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/}
}
TY  - JOUR
AU  - N. A. Strelkov
TI  - Projection-net widths and lattice packings
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 251
EP  - 269
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/
LA  - en
ID  - SM_1993_74_1_a16
ER  - 
%0 Journal Article
%A N. A. Strelkov
%T Projection-net widths and lattice packings
%J Sbornik. Mathematics
%D 1993
%P 251-269
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/
%G en
%F SM_1993_74_1_a16
N. A. Strelkov. Projection-net widths and lattice packings. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 251-269. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a16/