The space BMO and strong means of Fourier–Walsh series
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 203-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to series in the Walsh–Paley system. In particular, for an integrable function a condition is obtained for $p$-strong summability of the Fourier–Walsh series a.e. on $[0,1]$ along with a uniform analogue for a continuous, function on $[0,1]$.
@article{SM_1993_74_1_a14,
     author = {V. A. Rodin},
     title = {The space {BMO} and strong means of {Fourier{\textendash}Walsh} series},
     journal = {Sbornik. Mathematics},
     pages = {203--218},
     year = {1993},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a14/}
}
TY  - JOUR
AU  - V. A. Rodin
TI  - The space BMO and strong means of Fourier–Walsh series
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 203
EP  - 218
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a14/
LA  - en
ID  - SM_1993_74_1_a14
ER  - 
%0 Journal Article
%A V. A. Rodin
%T The space BMO and strong means of Fourier–Walsh series
%J Sbornik. Mathematics
%D 1993
%P 203-218
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a14/
%G en
%F SM_1993_74_1_a14
V. A. Rodin. The space BMO and strong means of Fourier–Walsh series. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 203-218. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a14/

[1] Schipp F., “Über die Summation von Walch-Fourierreihen”, Acta S. Math. Sreg., 30 (1969), 77–87 | MR | Zbl

[2] Oskolkov K. I., “O silnoi summiruemosti ryadov Fure”, Tr. MIAN, 172 (1985), 280–290 | MR | Zbl

[3] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Fizmatgiz, M., 1984 | MR

[4] Rutitskii Ya. B., “O nekotorykh klassakh izmerimykh funktsii”, UMN, 20:4 (1965), 205–208

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[6] Rodin V. A., Semyonov E. M., “Rademacher series in symmetric spaces”, Analysis Math., 1 (1975), 207–222 | DOI | MR | Zbl

[7] Fine N. J., “Cesaro summability of Walsh - Fourier series”, Proc. National Acad. Sci. USA, 1:8 (1955), 588–591 | DOI | MR

[8] Walsh J. L., “A closed set of normal orthogonal functions”, Amer. J. Math., 45 (1923), 5–24 | DOI | MR | Zbl

[9] Billard P., “Sur la convergence presque partout des series de Fourier - Walsh des fonctions de l'espace $L_2(0, 1)$”, Stud. math., 28:3 (1963), 363–388 | MR