Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 169-183

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G\subset SL(4)$ be a finite primitive linear group. We prove that if $G$ contains a normal subgroup of order 32 then the quotient variety $\mathbf P^3/G$ is birationally isomorphic to $X/G$, where $X$ is the Segre cubic. We also prove the rationality of $\mathbf P^3/G$ for a large class of such groups (in particular, solvable groups).
@article{SM_1993_74_1_a12,
     author = {I. Ya. Kolpakov-Miroshnichenko and Yu. G. Prokhorov},
     title = {Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the {Segre} cubic},
     journal = {Sbornik. Mathematics},
     pages = {169--183},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/}
}
TY  - JOUR
AU  - I. Ya. Kolpakov-Miroshnichenko
AU  - Yu. G. Prokhorov
TI  - Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 169
EP  - 183
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/
LA  - en
ID  - SM_1993_74_1_a12
ER  - 
%0 Journal Article
%A I. Ya. Kolpakov-Miroshnichenko
%A Yu. G. Prokhorov
%T Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic
%J Sbornik. Mathematics
%D 1993
%P 169-183
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/
%G en
%F SM_1993_74_1_a12
I. Ya. Kolpakov-Miroshnichenko; Yu. G. Prokhorov. Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 169-183. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/