Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 169-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G\subset SL(4)$ be a finite primitive linear group. We prove that if $G$ contains a normal subgroup of order 32 then the quotient variety $\mathbf P^3/G$ is birationally isomorphic to $X/G$, where $X$ is the Segre cubic. We also prove the rationality of $\mathbf P^3/G$ for a large class of such groups (in particular, solvable groups).
@article{SM_1993_74_1_a12,
     author = {I. Ya. Kolpakov-Miroshnichenko and Yu. G. Prokhorov},
     title = {Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the {Segre} cubic},
     journal = {Sbornik. Mathematics},
     pages = {169--183},
     year = {1993},
     volume = {74},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/}
}
TY  - JOUR
AU  - I. Ya. Kolpakov-Miroshnichenko
AU  - Yu. G. Prokhorov
TI  - Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 169
EP  - 183
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/
LA  - en
ID  - SM_1993_74_1_a12
ER  - 
%0 Journal Article
%A I. Ya. Kolpakov-Miroshnichenko
%A Yu. G. Prokhorov
%T Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic
%J Sbornik. Mathematics
%D 1993
%P 169-183
%V 74
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/
%G en
%F SM_1993_74_1_a12
I. Ya. Kolpakov-Miroshnichenko; Yu. G. Prokhorov. Rationality of fields of invariants of some four-dimensional linear groups, and an equivariant construction related to the Segre cubic. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 169-183. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a12/

[1] Noether E., “Gleichungen mit vorgeschriebener Gruppe”, Math. Ann., 78 (1916), 221–229 | DOI | MR

[2] Saltman D. J., “Noether's problem over an algebraically closed field”, Inv. Math., 77 (1984), 71–84 | DOI | MR | Zbl

[3] Kolpakov-Miroshnichenko I. Ya., Prokhorov Yu. G., “Ratsionalnost polya invariantov tochnogo chetyrekhmernogo predstavleniya gruppy ikosandra”, Matem. zametki, 41:4 (1987), 479–483 | MR | Zbl

[4] Maeda T., Noether's problem for $A_5$, Preprint, Hiroshima Univ., 1988 | Zbl

[5] Kolpakov-Miroshnichenko I. Ya., Prokhorov Yu. G., “Konstruktsiya ratsionalnosti polei invariantov nekotorykh konechnykh lineinykh grupp, svyazannaya s mnogoobraziyami Fano”, Matem. zametki, 50:4 (1991)

[6] Blichfeldt H. F., Finite collineation groups, Chicago press, The University of Chicago, 1917

[7] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[8] Burbaki N., Gruppy i algebry Li, gl. 4–6, Mir, M., 1972 | MR | Zbl

[9] Cohen A. M., “Finite complex reflection groups”, Ann. Sci. Ecole Norm. Sup., 4:9 (1976), 379–436 | MR | Zbl

[10] Kolpakov-Miroshnichenko I. Ya., Prokhorov Yu. G., Problema E. Neter dlya chetyrekhmernykh imprimitivnykh grupp, Preprint, Izd-vo MGU, 1989

[11] Reid M., “Minimal models of canonical 3-folds”, Adv. Stud. in Pure Math., 1 (1983), 131–180 | MR | Zbl

[12] Segre C., Opere, v. 4, Edizioni Cremoneze, Roma, 1963 | MR | Zbl

[13] Finkelnberg H., “Small reolutions of the Segre cubic”, Proc. Kon. Ned. Akad. Wet. Ser. A, 90:3 (1987), 261–277 | MR

[14] Nakamura I., “Moishezon threefolds homeomorphic to $\mathbf{P}^3$”, J. Math. Soc. Jap., 39:3 (1987), 521–535 | DOI | MR | Zbl

[15] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR