On a~special loop, the discon form, and the lattice connected with~$O_7(3)$
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 145-167

Voir la notice de l'article provenant de la source Math-Net.Ru

A special commutative Moufang loop $\mathbf H$ of order $3^4$ is described. With the help of this loop, a trilinear Dickson form is constructed whose automorphism group is a Chevalley group of type $E_6$. Next, with the help of $\mathbf H$, a 27-dimensional representation is constructed for $O_7(3)$ over $\mathbf Z[\zeta]$, $\zeta^3=1$. This makes it possible to prove anew the embedding $O_7(3)\subseteq{}^2E_6(2)$. A similar construction concerning the embedding $L_4(3)\subseteq F_4(2)$ is described.
@article{SM_1993_74_1_a11,
     author = {V. P. Burichenko},
     title = {On a~special loop, the discon form, and the lattice connected with~$O_7(3)$},
     journal = {Sbornik. Mathematics},
     pages = {145--167},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a11/}
}
TY  - JOUR
AU  - V. P. Burichenko
TI  - On a~special loop, the discon form, and the lattice connected with~$O_7(3)$
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 145
EP  - 167
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_74_1_a11/
LA  - en
ID  - SM_1993_74_1_a11
ER  - 
%0 Journal Article
%A V. P. Burichenko
%T On a~special loop, the discon form, and the lattice connected with~$O_7(3)$
%J Sbornik. Mathematics
%D 1993
%P 145-167
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_74_1_a11/
%G en
%F SM_1993_74_1_a11
V. P. Burichenko. On a~special loop, the discon form, and the lattice connected with~$O_7(3)$. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 145-167. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a11/