On a~special loop, the discon form, and the lattice connected with~$O_7(3)$
Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 145-167
Voir la notice de l'article provenant de la source Math-Net.Ru
A special commutative Moufang loop $\mathbf H$ of order $3^4$ is described. With the help of this loop, a trilinear Dickson form is constructed whose automorphism group is a Chevalley group of type $E_6$. Next, with the help of $\mathbf H$, a 27-dimensional representation is constructed for $O_7(3)$ over $\mathbf Z[\zeta]$, $\zeta^3=1$. This makes it possible to prove anew the embedding $O_7(3)\subseteq{}^2E_6(2)$. A similar construction concerning the embedding $L_4(3)\subseteq F_4(2)$ is described.
@article{SM_1993_74_1_a11,
author = {V. P. Burichenko},
title = {On a~special loop, the discon form, and the lattice connected with~$O_7(3)$},
journal = {Sbornik. Mathematics},
pages = {145--167},
publisher = {mathdoc},
volume = {74},
number = {1},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_74_1_a11/}
}
V. P. Burichenko. On a~special loop, the discon form, and the lattice connected with~$O_7(3)$. Sbornik. Mathematics, Tome 74 (1993) no. 1, pp. 145-167. http://geodesic.mathdoc.fr/item/SM_1993_74_1_a11/